程序员大数据学习大数据,机器学习,人工智能

Hadoop系列008-HDFS的数据流

2019-01-18  本文已影响8人  大数据首席数据师

HDFS写数据流程

1.1 剖析文件写入

image

1)客户端向namenode请求上传文件,namenode检查目标文件是否已存在,父目录是否存在。

2)namenode返回是否可以上传。

3)客户端请求第一个 block上传到哪几个datanode服务器上。

4)namenode返回3个datanode节点,分别为dn1、dn2、dn3。

5)客户端请求dn1上传数据,dn1收到请求会继续调用dn2,然后dn2调用dn3,将这个通信管道建立完成

6)dn1、dn2、dn3逐级应答客户端

7)客户端开始往dn1上传第一个block(先从磁盘读取数据放到一个本地内存缓存),以packet为单位,dn1收到一个packet就会传给dn2,dn2传给dn3;dn1每传一个packet会放入一个应答队列等待应答

8)当一个block传输完成之后,客户端再次请求namenode上传第二个block的服务器。(重复执行3-7步)

1.2 网络拓扑概念

image
在本地网络中,两个节点被称为“彼此近邻”是什么意思?在海量数据处理中,其主要限制因素是节点之间数据的传输速率——带宽很稀缺。这里的想法是将两个节点间的带宽作为距离的衡量标准。

节点距离:两个节点到达最近的共同祖先的距离总和。

例如,假设有数据中心d1机架r1中的节点n1。该节点可以表示为/d1/r1/n1。利用这种标记,这里给出四种距离描述。

Distance(/d1/r1/n1, /d1/r1/n1)=0(同一节点上的进程)
Distance(/d1/r1/n1, /d1/r1/n2)=2(同一机架上的不同节点)
Distance(/d1/r1/n1, /d1/r3/n2)=4(同一数据中心不同机架上的节点)
Distance(/d1/r1/n1, /d2/r4/n2)=6(不同数据中心的节点)

1.3 机架感知(副本节点选择)

1.3.1 官方地址

http://hadoop.apache.org/docs/r2.7.3/hadoop-project-dist/hadoop-common/RackAwareness.html

1.3.2 低版本Hadoop复本节点选择
image
1.3.3 Hadoop2.7.2副本节点选择
image
1.3.4 自定义机架感知

2 HDFS读数据流程

image

1)客户端向namenode请求下载文件,namenode通过查询元数据,找到文件块所在的datanode地址。

2)挑选一台datanode(就近原则,然后随机)服务器,请求读取数据。

3)datanode开始传输数据给客户端(从磁盘里面读取数据放入流,以packet为单位来做校验)。

4)客户端以packet为单位接收,先在本地缓存,然后写入目标文件。

3 一致性模型

3.1 debug调试如下代码

    @Test
    public void writeFile() throws Exception{
        // 1 创建配置信息对象
        Configuration configuration = new Configuration();
        fs = FileSystem.get(configuration);

        // 2 创建文件输出流
        Path path = new Path("hdfs://hadoop102:8020/user/atguigu/hello.txt");
        FSDataOutputStream fos = fs.create(path);

        // 3 写数据
        fos.write("hello".getBytes());
//      fos.flush();
        fos.hflush();
//      
//      fos.write("welcome to atguigu".getBytes());
//      fos.hsync();

        fos.close();
    }

3.2 总结

结语

感谢您的观看,如有不足之处,欢迎批评指正。

获取资料

本次给大家推荐一个免费的学习群,里面概括数据仓库/源码解析/Python/Hadoop/Flink/Spark/Storm/Hive以及面试资源等。
对大数据开发技术感兴趣的同学,欢迎加入Q群:894951460,不管你是小白还是大牛我都欢迎,还有大牛整理的一套高效率学习路线和教程与您免费分享,同时每天更新视频资料。
最后,祝大家早日学有所成,拿到满意offer,快速升职加薪,走上人生巅峰。

上一篇下一篇

猜你喜欢

热点阅读