病理

AI+数字化病理综述:Artificial intelligen

2021-09-06  本文已影响0人  ADO_AI

数字化病理及其定量算法想要解决的主要是传统人工病理中的人力紧缺、可重复性和个体评判的差异化问题

一、现代精准医学时代下的病理学科难题

二、传统数字化病理算法所涉及的方面包括:颜色标准化、空白过滤、去噪、或颜色增强、细胞or细胞核自动勾画、有丝分裂检测、目标检测

三、当前新兴的、已有的数字化病理分析平台

已商业化:

开源平台

\color{red}{不同平台间检测和分析的一致性问题也是待探讨的问题}
70 Ahern TP, Beck AH, Rosner BA et al. Continuous measurement of breast tumour hormone receptor expression: a comparison of two computational pathology platforms. J Clin Pathol 2017; 70: 428–34.
71 Koopman T, Buikema HJ, Hollema H et al. Digital image analysis of Ki67 proliferation index in breast cancer using virtual dual staining on whole tissue sections: clinical validation and inter-platform agreement. Breast Cancer Res Treat 2018; 169: 33–42.
72 Paulik R, Micsik T, Kiszler G et al. An optimized image analysis algorithm for detecting nuclear signals in digital whole slides for histopathology. Cytometry A 2017; 91: 595–608.

四、深度学习用于数字化病理

五、AI+数字化病理的不足与展望

1)训练集尽可能地大,涵盖范围广,能够最大程度地代表疾病的多面性
2)图像采集过程的标准化
3)分析前和分析过程的标准化:图像预处理、采用鲁棒性好的模型

Artificial intelligence in digital pathology: a roadmap to routine use in clinical practice;

US Food and Drug Administration. Proposed Regulatory
Framework for Modifications to Artificial Intelligence/
Machine Learning (AI/ML)-Based Software as a Medical
Device (SaMD) - Discussion Paper and Request for Feedback. 2019

上一篇 下一篇

猜你喜欢

热点阅读