OpenCV源码分析(三):高斯模糊

2018-12-09  本文已影响0人  奔向火星005

注:为方便分析和解释,文章中的代码是OpenCV源码的简化版,会略去源码中一些如断言,OpenCL,硬件加速等代码。因此详情最好参看源码。

先放一张高斯模糊的效果图,原图750x1024,高斯核大小为5x5,sigma为5.


高斯滤波原理可参看其他资料,本文不再赘述。

简而言之,高斯滤波是另一种平滑滤波,它和盒式滤波的不同在于,它是一种加权平均,离中心像素越近,权重越大,因此它比盒式滤波效果更好,但也更耗时,权重的值符合正态分布:


OpenCV的高斯模糊接口定义为:

void cv::GaussianBlur( InputArray _src,       
                                     OutputArray _dst,    
                                     Size ksize,               
                                     double sigma1,        
                                     double sigma2,
                                     int borderType )

其中_src和_dst分别为输入图像和输出图像数据,为Mat类型;ksize为核(也叫滤波窗口,模板)的大小;sigma1和sigma2分别为横轴和纵轴的\sigma的值;borderType为边界扩展类型。

接下来看下GaussianBlur函数的实现:

void cv::GaussianBlur( InputArray _src, OutputArray _dst, Size ksize,
                   double sigma1, double sigma2,
                   int borderType )
{
    int type = _src.type();
    Size size = _src.size();
    _dst.create( size, type );  //根据src的大小和类型创建

    //源码中这里会判断是否有OpenCL,若有则使用OpenCL的接口执行,在此省略了

    int sdepth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type);

     //源码中此处会使用并行方式执行高斯滤波,并返回。本文为分析方便,将它略去了...  

    Mat kx, ky;
    //生成高斯核
    createGaussianKernels(kx, ky, type, ksize, sigma1, sigma2);

    Mat src = _src.getMat();
    Mat dst = _dst.getMat();

    Point ofs;
    Size wsz(src.cols, src.rows);
    if(!(borderType & BORDER_ISOLATED))
        src.locateROI( wsz, ofs );

    //使用可分滤波执行
    sepFilter2D(src, dst, sdepth, kx, ky, Point(-1, -1), 0, borderType);
}

createGaussianKernels函数的实现为:

template <typename T>
static void createGaussianKernels( T & kx, T & ky, int type, Size &ksize,
                                   double sigma1, double sigma2 )
{
    int depth = CV_MAT_DEPTH(type);
    if( sigma2 <= 0 )
        sigma2 = sigma1;

    // automatic detection of kernel size from sigma
    if( ksize.width <= 0 && sigma1 > 0 )  //当输入核的宽小于0时的处理
        ksize.width = cvRound(sigma1*(depth == CV_8U ? 3 : 4)*2 + 1)|1;
    if( ksize.height <= 0 && sigma2 > 0 ) //同上
        ksize.height = cvRound(sigma2*(depth == CV_8U ? 3 : 4)*2 + 1)|1;

    sigma1 = std::max( sigma1, 0. );  //sigma1要大于0
    sigma2 = std::max( sigma2, 0. );  //同上

    getGaussianKernel( ksize.width, sigma1, std::max(depth, CV_32F), kx );
    if( ksize.height == ksize.width && std::abs(sigma1 - sigma2) < DBL_EPSILON )
        ky = kx;   //如果参数一样,则直接拷贝x轴的和给y轴
    else   //否则另外生成y轴的核
        getGaussianKernel( ksize.height, sigma2, std::max(depth, CV_32F), ky );
}

getGaussianKernel函数如下:

static void getGaussianKernel(int n, double sigma, int ktype, Mat& res) { res = getGaussianKernel(n, sigma, ktype); }

cv::Mat cv::getGaussianKernel( int n, double sigma, int ktype )
{
    //这个高斯核的一个近似的表
    const int SMALL_GAUSSIAN_SIZE = 7;
    static const float small_gaussian_tab[][SMALL_GAUSSIAN_SIZE] =
    {
        {1.f},
        {0.25f, 0.5f, 0.25f},
        {0.0625f, 0.25f, 0.375f, 0.25f, 0.0625f},
        {0.03125f, 0.109375f, 0.21875f, 0.28125f, 0.21875f, 0.109375f, 0.03125f}
    };

    //当sigma小于或等于0,且核的大小为奇数,且小于7时,用上面的表的数据构造核
    const float* fixed_kernel = n % 2 == 1 && n <= SMALL_GAUSSIAN_SIZE && sigma <= 0 ?
        small_gaussian_tab[n>>1] : 0;

    //核内的数据必须是浮点型
    CV_Assert( ktype == CV_32F || ktype == CV_64F );
    Mat kernel(n, 1, ktype);
    float* cf = kernel.ptr<float>();    
    double* cd = kernel.ptr<double>();
    //若sigma小于等于0,则用公式((n-1)*0.5 - 1)*0.3 + 0.8近似
    double sigmaX = sigma > 0 ? sigma : ((n-1)*0.5 - 1)*0.3 + 0.8;
    double scale2X = -0.5/(sigmaX*sigmaX);
    double sum = 0;

    int i;
    for( i = 0; i < n; i++ )
    {
        double x = i - (n-1)*0.5;
        //用查表或正态分布公式求值
        double t = fixed_kernel ? (double)fixed_kernel[i] : std::exp(scale2X*x*x);
        if( ktype == CV_32F )  //若是32位浮点数
        {
            cf[i] = (float)t;
            sum += cf[i];
        }
        else  //否则是64位浮点数
        {
            cd[i] = t;
            sum += cd[i];
        }
    }

    sum = 1./sum;
    for( i = 0; i < n; i++ )  //最后还要除以他们的和
    {
        if( ktype == CV_32F )
            cf[i] = (float)(cf[i]*sum);
        else
            cd[i] *= sum;
    }
    return kernel;
}

假如我们输入的ksize==5,sigma==5的话,我们生成的核的5个值为0.19205、0.203926、0.2.80、0.203926、0.19205,可见它是对称的。

分别生成了x轴和y轴的kernel后,将调用sepFilter2D,sepFilter2D是可分滤波器,它的意思是,有些二维滤波器可以用两个一维滤波器构造,如f2(x,y)是一个二维滤波器,它等于f1在x、y处值的积:f2(x,y) = f1(x)f1(y)。可分滤波器比直接用二维滤波器更有效率,原理可参见《Fundamentals of Computer Graphics》第9.3节。高斯滤波器和盒式滤波器都是可分滤波器,sepFilter2D函数如下:

void cv::sepFilter2D( InputArray _src, OutputArray _dst, int ddepth,
                      InputArray _kernelX, InputArray _kernelY, Point anchor,
                      double delta, int borderType )
{
    Mat src = _src.getMat(), kernelX = _kernelX.getMat(), kernelY = _kernelY.getMat();

    if( ddepth < 0 )
        ddepth = src.depth();

    _dst.create( src.size(), CV_MAKETYPE(ddepth, src.channels()) );
    Mat dst = _dst.getMat();

    Point ofs;
    Size wsz(src.cols, src.rows);
    if( (borderType & BORDER_ISOLATED) == 0 )
        src.locateROI( wsz, ofs );

    //isContinuous应该表示Mat内的内存是否连续,若连续则直接执行赋值运算符,否则使用clone,具体详情尚未验证
    Mat contKernelX = kernelX.isContinuous() ? kernelX : kernelX.clone();
    Mat contKernelY = kernelY.isContinuous() ? kernelY : kernelY.clone();

    hal::sepFilter2D(src.type(), dst.type(), kernelX.type(),
                     src.data, src.step, dst.data, dst.step,
                     dst.cols, dst.rows, wsz.width, wsz.height, ofs.x, ofs.y,
                     contKernelX.data, kernelX.cols + kernelX.rows - 1,
                     contKernelY.data, kernelY.cols + kernelY.rows - 1,
                     anchor.x, anchor.y, delta, borderType & ~BORDER_ISOLATED);
}

继续看hal::sepFilter2D,

void sepFilter2D(int stype, int dtype, int ktype,
                 uchar* src_data, size_t src_step, uchar* dst_data, size_t dst_step,
                 int width, int height, int full_width, int full_height,
                 int offset_x, int offset_y,
                 uchar * kernelx_data, int kernelx_len,
                 uchar * kernely_data, int kernely_len,
                 int anchor_x, int anchor_y, double delta, int borderType)
{

    bool res = replacementSepFilter(stype, dtype, ktype,
                                    src_data, src_step, dst_data, dst_step,
                                    width, height, full_width, full_height,
                                    offset_x, offset_y,
                                    kernelx_data, kernelx_len,
                                    kernely_data, kernely_len,
                                    anchor_x, anchor_y, delta, borderType);
    if (res)  //我也不知道是啥,反正为false
        return;

    //真正调用这个
    ocvSepFilter(stype, dtype, ktype,
                 src_data, src_step, dst_data, dst_step,
                 width, height, full_width, full_height,
                 offset_x, offset_y,
                 kernelx_data, kernelx_len,
                 kernely_data, kernely_len,
                 anchor_x, anchor_y, delta, borderType);
}

ocvSepFilter如下

static void ocvSepFilter(int stype, int dtype, int ktype,
                         uchar* src_data, size_t src_step, uchar* dst_data, size_t dst_step,
                         int width, int height, int full_width, int full_height,
                         int offset_x, int offset_y,
                         uchar * kernelx_data, int kernelx_len,
                         uchar * kernely_data, int kernely_len,
                         int anchor_x, int anchor_y, double delta, int borderType)
{
    Mat kernelX(Size(kernelx_len, 1), ktype, kernelx_data);
    Mat kernelY(Size(kernely_len, 1), ktype, kernely_data);
    Ptr<FilterEngine> f = createSeparableLinearFilter(stype, dtype, kernelX, kernelY,
                                                      Point(anchor_x, anchor_y),
                                                      delta, borderType & ~BORDER_ISOLATED);
    Mat src(Size(width, height), stype, src_data, src_step);
    Mat dst(Size(width, height), dtype, dst_data, dst_step);
    f->apply(src, dst, Size(full_width, full_height), Point(offset_x, offset_y));
};

从代码中我们看到,和盒式滤波器一样,它也是创建FilterEngine,并调用apply来执行的。createSeparableLinearFilter如下:

cv::Ptr<cv::FilterEngine> cv::createSeparableLinearFilter(
    int _srcType, int _dstType,
    InputArray __rowKernel, InputArray __columnKernel,
    Point _anchor, double _delta,
    int _rowBorderType, int _columnBorderType,
    const Scalar& _borderValue )
{
    Mat _rowKernel = __rowKernel.getMat(), _columnKernel = __columnKernel.getMat();
    _srcType = CV_MAT_TYPE(_srcType);  //_srcType为16(CV_8UC3),即元素为1uchar类型,3通道
    _dstType = CV_MAT_TYPE(_dstType);  //同上
    int sdepth = CV_MAT_DEPTH(_srcType), ddepth = CV_MAT_DEPTH(_dstType);
    int cn = CV_MAT_CN(_srcType);
    CV_Assert( cn == CV_MAT_CN(_dstType) );
    int rsize = _rowKernel.rows + _rowKernel.cols - 1;
    int csize = _columnKernel.rows + _columnKernel.cols - 1;
    if( _anchor.x < 0 )  //若anchor小于0则设在核的中心
        _anchor.x = rsize/2;
    if( _anchor.y < 0 )
        _anchor.y = csize/2;

//rtype和ctype都是5(CV_32F),即核的元素类型是32位浮点型
    int rtype = getKernelType(_rowKernel,
        _rowKernel.rows == 1 ? Point(_anchor.x, 0) : Point(0, _anchor.x));
    int ctype = getKernelType(_columnKernel,
        _columnKernel.rows == 1 ? Point(_anchor.y, 0) : Point(0, _anchor.y));
    Mat rowKernel, columnKernel;

//精度至少也要是32位浮点型
    int bdepth = std::max(CV_32F,std::max(sdepth, ddepth));
    int bits = 0;

    if( sdepth == CV_8U &&
        ((rtype == KERNEL_SMOOTH+KERNEL_SYMMETRICAL &&
          ctype == KERNEL_SMOOTH+KERNEL_SYMMETRICAL &&
          ddepth == CV_8U) ||
         ((rtype & (KERNEL_SYMMETRICAL+KERNEL_ASYMMETRICAL)) &&
          (ctype & (KERNEL_SYMMETRICAL+KERNEL_ASYMMETRICAL)) &&
          (rtype & ctype & KERNEL_INTEGER) &&
          ddepth == CV_16S)) )  //判断为真时,会把核转换成32位整型(并放大256倍),这么做的原因还不太清楚,猜测可能是整型比浮点型计算快吧...
    {
        bdepth = CV_32S;
        bits = ddepth == CV_8U ? 8 : 0;
        _rowKernel.convertTo( rowKernel, CV_32S, 1 << bits );
        _columnKernel.convertTo( columnKernel, CV_32S, 1 << bits );
        bits *= 2;
        _delta *= (1 << bits);
    }
    else
    {
        if( _rowKernel.type() != bdepth )
            _rowKernel.convertTo( rowKernel, bdepth );
        else
            rowKernel = _rowKernel;
        if( _columnKernel.type() != bdepth )
            _columnKernel.convertTo( columnKernel, bdepth );
        else
            columnKernel = _columnKernel;
    }

    int _bufType = CV_MAKETYPE(bdepth, cn);
//实际上是SymmRowSmallFilter或RowFilter类型
    Ptr<BaseRowFilter> _rowFilter = getLinearRowFilter(
        _srcType, _bufType, rowKernel, _anchor.x, rtype);
//实际上是SymmColumnFilter或SymmColumnSmallFilter类型
    Ptr<BaseColumnFilter> _columnFilter = getLinearColumnFilter(
        _bufType, _dstType, columnKernel, _anchor.y, ctype, _delta, bits );

//创建FilterEngine
    return Ptr<FilterEngine>( new FilterEngine(Ptr<BaseFilter>(), _rowFilter, _columnFilter,
        _srcType, _dstType, _bufType, _rowBorderType, _columnBorderType, _borderValue ));
}

再回到ocvSepFilter函数,它调用FilterEngine的apply开始执行,它和盒式滤波器是一样的,如下:

int FilterEngine::proceed(unsigned char* src, int srcstep, int count,
                              unsigned char* dst, int dststep)
    {
        const int *btab = &_borderTab[0];
        int esz = 3, btab_esz = _borderElemSize;
        unsigned char** brows = &_rows[0];
        int bufRows = (int)_rows.size();
        int cn = 3;
        int width = _roi._width, kwidth = _ksize._width;
        int kheight = _ksize._height, ay = _anchor._y;
        int dx1 = _dx1, dx2 = _dx2;
        int width1 = _roi._width + kwidth - 1;
        int xofs1 = std::min(_roi._x, _anchor._x);
        bool isSep = isSeparable();
        bool makeBorder = (dx1 > 0 || dx2 > 0) && _rowBorderType != BORDER_CONSTANT;
        int dy = 0, i = 0;

        src -= xofs1*esz;
        count = std::min(count, remainingInputRows());

        for(;; dst += dststep*i, dy += i)
        {
            int dcount = bufRows - ay - _startY - _rowCount + _roi._y;
            dcount = dcount > 0 ? dcount : bufRows - kheight + 1;
            dcount = std::min(dcount, count);
            count -= dcount;
            for( ; dcount-- > 0; src += srcstep )
            {
                int bi = (_startY - _startY0 + _rowCount) % bufRows;
                unsigned char* brow = alignPtr(&_ringBuf[0], VEC_ALIGN) + bi*_bufStep;  //用来存储dst数据
                unsigned char* row = isSep ? &_srcRow[0] : brow;  //用来存储src数据

                if( ++_rowCount > bufRows )
                {
                    --_rowCount;
                    ++_startY;
                }

                //注意row+dx1*esz指向的数据才是src的数据,row[0]的数据是左边界扩展而来的数据
                memcpy( row + dx1*esz, src, (width1 - dx2 - dx1)*esz );

                if( makeBorder )  //是否需要补边
                {
                    if( btab_esz*(int)sizeof(int) == esz )
                    {
                        const int* isrc = (const int*)src;
                        int* irow = (int*)row;

                        for( i = 0; i < dx1*btab_esz; i++ )
                            irow[i] = isrc[btab[i]];
                        for( i = 0; i < dx2*btab_esz; i++ )
                            irow[i + (width1 - dx2)*btab_esz] = isrc[btab[i+dx1*btab_esz]];
                    }
                    else
                    {
                        for( i = 0; i < dx1*esz; i++ ) //扩展左边界的数据
                            row[i] = src[btab[i]];
                        for( i = 0; i < dx2*esz; i++ ) //扩展右边界的数据
                            row[i + (width1 - dx2)*esz] = src[btab[i+dx1*esz]];
                    }
                }

                if( isSep ) {
                    (*_rowFilter)(row, brow, width, 3);  //对一行像素row进行滤波,结果存到brow(_ringBuf)中
                }
            }

            int max_i = std::min(bufRows, _roi._height - (_dstY + dy) + (kheight - 1));
            for( i = 0; i < max_i; i++ )
            {   //扩展上边界
                int srcY = borderInterpolate(_dstY + dy + i + _roi._y - ay,
                                             _wholeSize._height, _columnBorderType);
                if( srcY < 0 ) // can happen only with constant border type
                    brows[i] = alignPtr(&_constBorderRow[0], VEC_ALIGN);
                else
                {
                    if( srcY >= _startY + _rowCount )
                        break;
                    int bi = (srcY - _startY0) % bufRows;
                    brows[i] = alignPtr(&_ringBuf[0], VEC_ALIGN) + bi*_bufStep; //注意brows[0]到brows[1]是补边得到的
                }
            }
            if( i < kheight )
                break;
            i -= kheight - 1;
            if( isSeparable() )
                (*_columnFilter)((const unsigned char**)brows, dst, dststep, i, _roi._width*cn); //纵向滤波,输出到dst(也是最终输出)
            else
                (*_filter2D)((const unsigned char**)brows, dst, dststep, i, _roi._width, cn);
        }
        _dstY += dy;
        return dy;
    }

和之前盒式滤波器唯一的区别是 (_rowFilter)(row, brow, width, 3)和(_columnFilter)((const unsigned char*)brows, dst, dststep, i, _roi._widthcn)两个滤波的实现不一样。假如我们使用的参数ksize==5,sigma1和sigma2都等于5,则_rowFilter实际上是SymmRowSmallFilter类型,_columnFilter是SymmColumnFilter类型,先看横向滤波SymmColumnSmallFilter的()操作符的实现:

    void operator()(const uchar* src, uchar* dst, int width, int cn)
    {
        //DT,ST都是模板类型,ST是输入数据类型(也就是图像数据类型),本例中为uchar,DT是输出数据类型,为int

        int ksize2 = this->ksize/2, ksize2n = ksize2*cn;
        const DT* kx = this->kernel.template ptr<DT>() + ksize2;
        bool symmetrical = (this->symmetryType & KERNEL_SYMMETRICAL) != 0;
        DT* D = (DT*)dst;

        //vecOp是仿函数,调用的是SymmRowSmallVec_8u32s类的()操作符,它实际上就是把src的char数据转换为int类型的dst数据
        int i = this->vecOp(src, dst, width, cn), j, k;  //返回的i是src被移动的字节数
        const ST* S = (const ST*)src + i + ksize2n;  //src要加上i才是原来的src,加上ksize2n是因为src开始有补边数据
        width *= cn;

        if( symmetrical )
        {
            if( this->ksize == 1 && kx[0] == 1 )
            {
                //省略...
            }
            else if( this->ksize == 3 )
            {
                //省略...
            }
            else if( this->ksize == 5 )  //假设ksize是5
            {
                DT k0 = kx[0], k1 = kx[1], k2 = kx[2];
                if( k0 == -2 && k1 == 0 && k2 == 1 )  
                    for( ; i <= width - 2; i += 2, S += 2 )
                    {
                        DT s0 = -2*S[0] + S[-cn*2] + S[cn*2];
                        DT s1 = -2*S[1] + S[1-cn*2] + S[1+cn*2];
                        D[i] = s0; D[i+1] = s1;
                    }
                else
                    for( ; i <= width - 2; i += 2, S += 2 )  //一般跳到这里
                    {   //每次处理两组数据,从左到右滑动窗口,加权就和,放到s0和s1中
                        DT s0 = S[0]*k0 + (S[-cn] + S[cn])*k1 + (S[-cn*2] + S[cn*2])*k2;
                        DT s1 = S[1]*k0 + (S[1-cn] + S[1+cn])*k1 + (S[1-cn*2] + S[1+cn*2])*k2;
                        D[i] = s0; D[i+1] = s1;
                    }
            }

            for( ; i < width; i++, S++ )
            {
                DT s0 = kx[0]*S[0];
                for( k = 1, j = cn; k <= ksize2; k++, j += cn )
                    s0 += kx[k]*(S[j] + S[-j]);
                D[i] = s0;
            }
        }
        else
        {
            //省略...
        }
    }

    int symmetryType;
};

接下来看SymmColumnFilter的处理,

    void operator()(const uchar** src, uchar* dst, int dststep, int count, int width)
    {
        int ksize2 = this->ksize/2;
        const ST* ky = this->kernel.template ptr<ST>() + ksize2;
        int i, k;
        bool symmetrical = (symmetryType & KERNEL_SYMMETRICAL) != 0;
        ST _delta = this->delta;
        CastOp castOp = this->castOp0;
        src += ksize2;  //跳过补边数据

        if( symmetrical )
        {
            for( ; count--; dst += dststep, src++ )
            {
                DT* D = (DT*)dst;
                i = (this->vecOp)(src, dst, width);
                #if CV_ENABLE_UNROLLED
                //省略...
                #endif
                for( ; i < width; i++ )
                {   //纵向加权求和             
                    ST s0 = ky[0]*((const ST*)src[0])[i] + _delta;
                    for( k = 1; k <= ksize2; k++ )
                        s0 += ky[k]*(((const ST*)src[k])[i] + ((const ST*)src[-k])[i]);
                    D[i] = castOp(s0);  //防溢出
                }
            }
        }
        else
        {
            //省略...
        }
    }
上一篇 下一篇

猜你喜欢

热点阅读