3种解法 - 得到车的可用捕获量
题目
在一个 8 x 8 的棋盘上,有一个白色车(rook)。也可能有空方块,白色的象(bishop)和黑色的卒(pawn)。它们分别以字符 “R”,“.”,“B” 和 “p” 给出。大写字符表示白棋,小写字符表示黑棋。
车按国际象棋中的规则移动:它选择四个基本方向中的一个(北,东,西和南),然后朝那个方向移动,直到它选择停止、到达棋盘的边缘或移动到同一方格来捕获该方格上颜色相反的卒。另外,车不能与其他友方(白色)象进入同一个方格。
返回车能够在一次移动中捕获到的卒的数量。
示例 1:
示例1
输入:[[".",".",".",".",".",".",".","."],[".",".",".","p",".",".",".","."],[".",".",".","R",".",".",".","p"],[".",".",".",".",".",".",".","."],[".",".",".",".",".",".",".","."],[".",".",".","p",".",".",".","."],[".",".",".",".",".",".",".","."],[".",".",".",".",".",".",".","."]]
输出:3
解释:
在本例中,车能够捕获所有的卒。
示例 2:
输入:[[".",".",".",".",".",".",".","."],[".","p","p","p","p","p",".","."],[".","p","p","B","p","p",".","."],[".","p","B","R","B","p",".","."],[".","p","p","B","p","p",".","."],[".","p","p","p","p","p",".","."],[".",".",".",".",".",".",".","."],[".",".",".",".",".",".",".","."]]
输出:0
解释:
象阻止了车捕获任何卒。
示例 3:
输入:[[".",".",".",".",".",".",".","."],[".",".",".","p",".",".",".","."],[".",".",".","p",".",".",".","."],["p","p",".","R",".","p","B","."],[".",".",".",".",".",".",".","."],[".",".",".","B",".",".",".","."],[".",".",".","p",".",".",".","."],[".",".",".",".",".",".",".","."]]
输出:3
解释:
车可以捕获位置 b5,d6 和 f5 的卒。
提示:
board.length == board[i].length == 8
board[i][j] 可以是 'R','.','B' 或 'p'
只有一个格子上存在 board[i][j] == 'R'
解法一(行列查找)
思路:查找到白色车所在的坐标后,依次提取出对应的行列,然后在里面进行查找。
- 提取白色车所在的行列坐标
- 获取白色车对应行和列的值,组成新的列表
- 在两个列表中判断和计算
- 时间复杂度:O(n2)
- 空间复杂度:O(n)
class Solution:
def numRookCaptures(self, board: List[List[str]]) -> int:
row,col , cnt = -1,-1,0
lenRow, lenCol = len(board), len(board[0])
#获取坐标位置
for i in range(0,lenRow):
if 'R' in board[i]:
col = board[i].index('R')
row = i
break
#子函数判断是否满足
def checkP(bList, start, end, direct)-> int:
for i in range(start,end,direct):
if bList[i] == 'p':
return 1
elif bList[i] == 'B':
return 0
return 0
#提取行列
rowList = board[row]
colList = [b[col] for b in board]
#依次判断
cnt += checkP(colList,row-1,-1,-1)
cnt += checkP(colList,row+1,lenRow,1)
cnt += checkP(rowList,col-1,-1,-1)
cnt += checkP(rowList,col+1,lenCol,1)
return cnt
解法二(递归查找)
思路:得到白色车所在行列后,以该位置为中心分别进行递归查找
- 提取白色车所在的行列坐标
- 使用递归在对应方向上持续寻找,直到边界
- 分别计算前后左右四个不同的方向
- 时间复杂度:O(n2)
- 空间复杂度:O(1)
class Solution:
def numRookCaptures(self, board: List[List[str]]) -> int:
row,col , cnt = -1,-1,0
lenRow, lenCol = len(board), len(board[0])
#获取坐标位置
for i in range(0,lenRow):
if 'R' in board[i]:
col = board[i].index('R')
row = i
break
# 在一个方向上递归查找
def checkP(rIdx, cIdx, rDelta, cDelta, lenList)-> int:
if not( 0 <= rIdx < lenList and 0 <= cIdx < lenList):
return 0
if board[rIdx][cIdx] == 'p':
return 1
elif board[rIdx][cIdx] == 'B':
return 0
else :
return checkP(rIdx + rDelta,cIdx + cDelta,rDelta,cDelta,lenList)
# 四个方向分别计算
cnt += checkP(row+1,col,1,0,lenRow)
cnt += checkP(row,col+1,0,1,lenRow)
cnt += checkP(row-1,col,-1,0,lenRow)
cnt += checkP(row,col-1,0,-1,lenRow)
return cnt
解法三(方向数组)
思路:基本原理跟解法二一致,使用方向数组进行循环查找
- 提取白色车所在的行列坐标
- 使用方向数组,在四个方向上分别进行循环,每次仅在一个方向上前进
- 累计四个方向的判断结果
- 时间复杂度:O(n2)
- 空间复杂度:O(1)
class Solution:
def numRookCaptures(self, board: List[List[str]]) -> int:
row,col , cnt = -1,-1,0
lenRow, lenCol = len(board), len(board[0])
dirRow, dirCol = [1,0,-1,0],[0,1,0,-1]
for i in range(0,lenRow):
if 'R' in board[i]:
col = board[i].index('R')
row = i
break
for i in range(0,4):#4个方向
rIdx, cIdx = row, col
for j in range(0,lenRow):
rIdx += dirRow[i]
cIdx += dirCol[i]
if not( 0 <= rIdx < lenRow and 0 <= cIdx < lenRow):
break
if board[rIdx][cIdx] == 'p':
cnt += 1
break
elif board[rIdx][cIdx] == 'B':
break
return cnt