群体遗传学

MatrixEQTL-----eQTL分析

2024-02-29  本文已影响0人  GenomeStudy

好久没有发简书了,去学习新技术新知识去了,实在是没有时间!!现在有点时间,记录分享一下新知识~
这段时间也是被这个eQTL搞得很头疼,现在终于弄出来,记录记录!

Matrix eQTL是一款针对大型矩阵可以超快运行进行eQTL分析的软件(http://www.bios.unc.edu/research/genomic_software/Matrix_eQTL/)。

一、首先就是数据的准备!(很重要)

先要准备4个文件(5个)

1.SNP信息文件和SNP位置文件,SNP信息文件需要012类型

好多人没有这个类型的snp文件,下面我就一步一步的教你们

#!/bin/bash
vcf=/your_path/all.rename_sorted.snp.vcf

## MAF、缺失率过滤
plink --vcf $vcf  --make-bed --geno 0.1 --maf 0.05 --out snp.v1

plink --bfile  snp.v1 --hardy
echo "计算所有位点的HWE的P值;生成plink.hwe"

plink --bfile snp.v1 -hwe 1e-4 -make-bed -out plink.hwe
echo "设定过滤标准1e-4l"

plink --bfile plink.hwe --recodeA --out snp.v2
echo "生成 .raw 文件,即为 012 矩阵,缺失的点标记为 NA"

cat snp.v2.raw | cut -d" " -f1,7- | sed 's/_[A-Z]//g' > genotype.txt
echo "2-6 列删除,并格式化 RS ID"

awk '{i=1;while(i <= NF){col[i]=col[i] $i " ";i=i+1}} END {i=1;while(i<=NF){print col[i];i=i+1}}' genotype.txt | sed 's/[ \t]*$//g' > genotype_transpose.txt
echo "用 awk 进行矩阵转置"

sed -i "s# #\t#g" genotype_transpose.txt

# SNP 位置信息可从 .map 文件获取:
plink --bfile  plink.hwe --recode --out snp.v3

echo "snpid chr pos" >snpsloc.txt
awk '{print $2,"chr"$1,$4}' snp.v3.map >>snpsloc.txt

sed -i "s# #\t#g" snpsloc.txt

现在生成的genotype_transpose.txt就是SNP信息文件,snpsloc.txt就是SNP位置文件

head(genotype_transpose.txt)
FID     DNA1    DNA2    DNA3    DNA4    DNA5    DNA6    DNA7    DNA8    DNA9    DNA10   DNA11   DNA12   DNA13   DNA14   DNA15   DNA16   DNA18   DNA19   DNA20   DNA21   DNA22   DNA23   DNA24   DNA25   DNA26   DNA27   DNA28   DNA30   DNA31   DNA32   DNA33
Chr1-30469      0       0       0       0       0       0       0       1       0       0       0       0       1       0       0       0       0       0       0       0       0       1       0       0       0       0       0       0       0       0
Chr1-30517      0       0       0       0       0       1       0       1       0       1       0       0       1       0       0       0       0       0       0       0       1       0       1       0       0       1       1       0       0       0
Chr1-30533      0       1       1       1       1       1       2       0       1       0       1       0       0       0       0       1       0       1       1       0       0       0       1       0       0       0       1       1       0       0
Chr1-69062      1       1       1       1       1       1       1       1       1       1       0       1       1       0       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1
Chr1-89929      0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       1       0       0       0       0       0       0       0       1       0       0       0       0       0       0
Chr1-91327      0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       1       0       0       0       0       0       0       0       0
Chr1-130169     0       0       0       0       0       2       0       1       0       2       0       0       1       0       0       0       0       0       0       0       2       0       1       0       0       1       2       0       0       0
Chr1-188094     0       0       0       0       0       0       0       0       0       0       2       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0
Chr1-190417     0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0
Chr1-191152     0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0
Chr1-191944     0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0
Chr1-194442     0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0
Chr1-199462     0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0
Chr1-199533     0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0
Chr1-204570     0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0
Chr1-206474     0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0
Chr1-217339     0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0
Chr1-217421     0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0
Chr1-217626     0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0
Chr1-217663     0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0
Chr1-220802     0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0
Chr1-221433     0       0       0       0       0       0       0       0       0       0       2       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0
Chr1-221715     0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0
Chr1-226134     0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       NA      0       0       0       0       0       0
Chr1-226530     0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0
Chr1-227955     0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0
Chr1-235012     0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       1       0       0       0       0       0       0       0       0       0       0       0       0
Chr1-241685     0       0       0       0       0       0       0       0       0       0       0 


head(snpsloc.txt)
snpid   Chr    pos
Chr1-30469      Chr01   30469
Chr1-30517      Chr01   30517
Chr1-30533      Chr01   30533
Chr1-69062      Chr01   69062
Chr1-89929      Chr01   89929
Chr1-91327      Chr01   91327
Chr1-130169     Chr01   130169
Chr1-188094     Chr01   188094
Chr1-190417     Chr01   190417

2.准备自己的表达量矩阵,也可以对矩阵进行取log2,进行标准化

这个文章里面就是这个操作的:eQTL Regulating Transcript Levels Associated with Diverse Biological Processes in Tomato

3.准备自己的基因位置信息

grep "gene" geonom.gff3  |grep -v "ChrUn" | awk -F ";" '{print $1}' | sed -e "s/ID=//g" | awk '{print $9"\t"$1"\t"$4"\t"$5}' > geneloc.txt 
head(geneloc.txt)
LOC_Os01g01010  Chr01   2903    10817
LOC_Os01g01019  Chr01   11218   12435
LOC_Os01g01030  Chr01   12648   15915
LOC_Os01g01040  Chr01   16292   20323
LOC_Os01g01050  Chr01   22841   26971
LOC_Os01g01060  Chr01   27136   28651
LOC_Os01g01070  Chr01   29818   34493

一定要注意,snpsloc.txtgeneloc.txtChr一定要对应,不能一个是Chr一个是chr!!!

4.正式开始eQTL分析

library(MatrixEQTL)
## Settings
# Genotype file name
SNP_file_name = paste( "/your_path/genotype_transpose.txt", sep="\t");
snps_location_file_name = paste( "/your_path/snpsloc.txt", sep="\t");

# Gene expression file name
expression_file_name = paste( "/your_path/experssion.csv", sep=" ");
gene_location_file_name = paste( "/your_path/geneloc.txt", sep="");

## Load genotype data
snps = SlicedData$new();
snps$fileDelimiter = "\t";      # the TAB character
snps$fileOmitCharacters = "NA"; # denote missing values;
snps$fileSkipRows = 1;          # one row of column labels
snps$fileSkipColumns = 1;       # one column of row labels
snps$fileSliceSize = 2000;      # read file in slices of 2,000 rows
snps$LoadFile(SNP_file_name);

## Load gene expression data
gene = SlicedData$new();
gene$fileDelimiter = "\t";      # the TAB character
gene$fileOmitCharacters = "NA"; # denote missing values;
gene$fileSkipRows = 1;          # one row of column labels
gene$fileSkipColumns = 1;       # one column of row labels
gene$fileSliceSize = 2000;      # read file in slices of 2,000 rows
gene$LoadFile(expression_file_name);

## Run the analysis
snpspos = read.table(snps_location_file_name, header=TRUE, stringsAsFactors = FALSE, sep="\t");
genepos = read.table(gene_location_file_name, header=TRUE, stringsAsFactors = FALSE, sep="\t");

me = Matrix_eQTL_main(
  snps = snps,
  gene = gene,
  output_file_name   = "./modelANOVA.tra.txt",
  pvOutputThreshold  = 1e-5,
  useModel = modelANOVA, # modelANOVA, modelLINEAR, or modelLINEAR_CROSS
  errorCovariance = numeric(),
  verbose = TRUE,
  output_file_name.cis = "./modelANOVA.cis.txt",
  pvOutputThreshold.cis = 1e-5,
  snpspos = snpspos,
  genepos = genepos,
  cisDist =  2e5,
  pvalue.hist = "qqplot",
  min.pv.by.genesnp = FALSE,
  noFDRsaveMemory = FALSE);

pdf("modelANOVA.pdf")
plot(me)
dev.off()

cisDist界定trans和cis的阈值;pvOutputThreshold判断trans的阈值;pvOutputThreshold.cis判断cis的阈值
可以根据自己物种基因组大小,基因-基因间区大小设置cisDist

5.用曼哈顿图----展示eQTL结果

# 加载所需的包
library(qqman)
# 读取文件
eQTL_results <- read.table("std3.modelANOVA.tra.txt", header=TRUE, sep="\t")
# 分离SNP列以获取染色体号和位置
eQTL_results$CHR <- as.numeric(gsub("Chr", "", gsub("-.*", "", eQTL_results$SNP)))
eQTL_results$BP <- as.numeric(gsub(".*-", "", eQTL_results$SNP))
# 确保使用未转换的p-value列 'p.value'
plot_data <- eQTL_results[, c("SNP", "CHR", "BP", "p.value")]

# 检查新的数据框
head(plot_data)
# 绘制曼哈顿图
pdf(file="modelANOVA.trans.pdf", width=11, height=8.5)
manhattan(plot_data, chr="CHR", bp="BP", p="p.value", snp="SNP", main="eQTL Manhattan Plot", col=c("blue4", "orange3"))
dev.off()
上一篇 下一篇

猜你喜欢

热点阅读