Python-科学计算-pandas-12-df单列计算
2020-09-05 本文已影响0人
Data_Python_VBA
系统:Windows 7
语言版本:Anaconda3-4.3.0.1-Windows-x86_64
编辑器:pycharm-community-2016.3.2
pandas:0.19.2
- 这个系列讲讲Python的科学计算及可视化
- 今天讲讲pandas模块
- 计算Dataframe某一列的和、均值、最大值、最小值、样本标准方差
Part 1:背景
- 已知一个Df,如下图
- 包括3列
["time", "pos", "value1", "value2"]
- 包括8行
[0,1,2,3,4,5,6,7]
- 包括3列
- 目标:求value1该列的和、均值、最大值、最小值、样本标准方差
Df
Part 2:代码
import pandas as pd
dict_1 = {"time": ["2019-11-02", "2019-11-03", "2019-11-04", "2019-11-05",
"2019-12-02", "2019-12-03", "2019-12-04", "2019-12-05"],
"pos": ["A", "A", "B", "B", "C", "C", "C", "D"],
"value1": [10, 20, 30, 40, 50, 60, 70, 80],
"value2": [20, 30, 40, 50, 60, 70, 80, 90]}
df_1 = pd.DataFrame(dict_1, columns=["time", "pos", "value1", "value2"])
print(df_1, "\n")
# 单列计算
# 求和
sum_value = df_1["value1"].sum()
print("求和:", sum_value)
# 求均值
mean_value = df_1["value1"].mean()
print("均值:", mean_value)
# 最大值
max_value = df_1["value1"].max()
print("最大值:", max_value)
# 最小值
max_value = df_1["value1"].min()
print("最小值:", max_value)
# 标准方差
std_value = df_1["value1"].std()
print("标准方差:", std_value)
代码截图
运行结果
Part 3:部分代码解读
- 求单列的和
df_1["value1"].sum()
,基本格式df[列名].计算函数()
- 和:sum
- 均值:mean
- 最大值:max
- 最小值:min
- 样本标准方差:std,注意是样本标准方差,对应(n-1),不是总体标准方差
Ps:根据pos列可以将value1进行分组,那么对应每一组的计算值又如何实现?请看下回分解
本文为原创作品,欢迎分享朋友圈
长按图片识别二维码,关注本公众号
Python 优雅 帅气
12x0.8.jpg