金融风控赛一

2020-09-15  本文已影响0人  搬砖_工程师

赛题以金融风控中的个人信贷为背景,要求选手根据贷款申请人的数据信息预测其是否有违约的可能,以此判断是否通过此项贷款。这是一道基础的01分类问题,赛题总数据量超过120w,包含47列变量信息,其中15列为匿名变量。为了保证比赛的公平性,从中抽取80万条作为训练集,20万条作为测试集A,20万条作为测试集B。测试集A为本地测试集。
本次赛题以AUC作为评判指标
AUC(Area Under Curve)被定义为 ROC曲线 下与坐标轴围成的面积。

分类算法常见的评估指标如下:

1、混淆矩阵(Confuse Matrix)

2、准确率(Accuracy) 准确率是常用的一个评价指标,但是不适合样本不均衡的情况。 Accuracy = \frac{TP + TN}{TP + TN + FP + FN}

3、精确率(Precision) 又称查准率,正确预测为正样本(TP)占预测为正样本(TP+FP)的百分比。 Precision = \frac{TP}{TP + FP}

4、召回率(Recall) 又称为查全率,正确预测为正样本(TP)占正样本(TP+FN)的百分比。 Recall = \frac{TP}{TP + FN}

5、F1 Score 精确率和召回率是相互影响的,精确率升高则召回率下降,召回率升高则精确率下降,如果需要兼顾二者,就需要精确率、召回率的结合F1 Score。 F1-Score = \frac{2}{\frac{1}{Precision} + \frac{1}{Recall}}

6、P-R曲线(Precision-Recall Curve) P-R曲线是描述精确率和召回率变化的曲线

7、ROC(Receiver Operating Characteristic)

TPR:在所有实际为正例的样本中,被正确地判断为正例之比率。 TPR = \frac{TP}{TP + FN} FPR:在所有实际为负例的样本中,被错误地判断为正例之比率。 FPR = \frac{FP}{FP + TN}

roc.png

8、AUC(Area Under Curve) AUC(Area Under Curve)被定义为 ROC曲线 下与坐标轴围成的面积,显然这个面积的数值不会大于1。又由于ROC曲线一般都处于y=x这条直线的上方,所以AUC的取值范围在0.5和1之间。AUC越接近1.0,检测方法真实性越高;等于0.5时,则真实性最低,无应用价值。

对于金融风控预测类常见的评估指标如下:

1、KS(Kolmogorov-Smirnov) KS统计量由两位苏联数学家A.N. Kolmogorov和N.V. Smirnov提出。在风控中,KS常用于评估模型区分度。区分度越大,说明模型的风险排序能力(ranking ability)越强。 K-S曲线与ROC曲线类似,不同在于

KS(%) 好坏区分能力
20以下 不建议采用
20-40 较好
41-50 良好
51-60 很强
61-75 非常强
75以上 过于高,疑似存在问题

数据集中列的解释也已经给出可以结合实际业务来进行特征取舍
比赛依托于天池,提交结果示例以给出。

上一篇下一篇

猜你喜欢

热点阅读