leetcode BFS+DFS

2018-06-06  本文已影响61人  MisAutumn

BFS循环常用比较参数:queue.size()

107. Binary Tree Level Order Traversal II

https://leetcode.com/problems/binary-tree-level-order-traversal-ii/description/

//BFS time(logN+N) space(2N)
class Solution {
    public List<List<Integer>> levelOrderBottom(TreeNode root) {
        List<List<Integer>> result = new LinkedList<>();
        if(root==null) return result;
        Queue<TreeNode> queue = new LinkedList<>();
        queue.offer(root);
        while(!queue.isEmpty()){
            List<Integer> list = new LinkedList<>();
            int size = queue.size();
            for(int i=size; i>0; i--){
                root = queue.poll();
                list.add(root.val);
                if(root.left!=null) queue.offer(root.left);
                if(root.right!=null) queue.offer(root.right);
            }
            //头插法 不知道为什么不能用addFirst()
            result.add(0, list);
        }
        return result;
    }
}

102. Binary Tree Level Order Traversal

https://leetcode.com/problems/binary-tree-level-order-traversal/description/

class Solution {
    public List<List<Integer>> levelOrder(TreeNode root) {
        List<List<Integer>> whole = new LinkedList<>();
        Queue<TreeNode> queue = new LinkedList<>();
        if(root==null) return whole;
        queue.offer(root);
        int num=1;
        while(queue.peek()!=null){
            List<Integer> list = new LinkedList<>();
            int size = queue.size();
            for(int i=size; i>0; i--){
                root = queue.poll();
                list.add(root.val);
                if(root.left!=null) queue.offer(root.left);
                if(root.right!=null) queue.offer(root.right);
            }
            whole.add(list);
        }
        return whole;
    }
}

LinkedList 和 ArrayList 的区别:
LinkedList是采用链表实现的,在进行insert和remove动作时在效率上要比ArrayList要好得多!适合用来实现Stack(堆栈)与Queue(队列)。
ArrayList以数组的方式来实现,可以使用索引的方式来快速定位对象的位置,因此对于快速的随机取得对象的需求,使用ArrayList实现执行效率上会比较好。

103. Binary Tree Zigzag Level Order Traversal

class Solution {
    //BFS 与之前几题的不同之处是判断depth的奇偶性
    public List<List<Integer>> zigzagLevelOrder(TreeNode root) {
        List<List<Integer>> result = new LinkedList<>();
        if(root==null) return result;
        Queue<TreeNode> queue = new LinkedList<>();
        queue.offer(root);
        int depth=0; 
        //even: from left to right 
        //odd: from right to left
        while(!queue.isEmpty()){
            List<Integer> list = new LinkedList();
            int size = queue.size();
            for(int i=size; i>0; i--){
                root=queue.poll();
                if(depth%2==0) list.add(root.val);
                else list.add(0, root.val);
                if(root.left!=null) queue.offer(root.left);
                if(root.right!=null) queue.offer(root.right);
            }
            depth++;
            result.add(list);
        }
        return result;
    }
}

上面三道题大同小异,都用了BFS。下面尝试用DFS解第102题。

class Solution {
    public List<List<Integer>> levelOrder(TreeNode root) {
        List<List<Integer>> result = new ArrayList<>();
        level(root, result, 0);
        return result; 
    }
    public void level(TreeNode root, List<List<Integer>> result, int height){
        if(root==null) return;
        //如果相同高度这个node不是第一个的话,不用新建list
        if(result.size()<=height) {
            List<Integer> list = new LinkedList<>();
            result.add(list);
        }
        result.get(height).add(root.val);
        level(root.left, result, height+1);
        level(root.right, result, height+1);
    }
}

111. Minimum Depth of Binary Tree

DFS recursive

class Solution {
    public int minDepth(TreeNode root) {
        if(root==null) return 0;
        int height=0;
        if(root.left==null && root.right==null) return height+1;
        else if(root.left!=null && root.right!=null) 
              return Math.min(minDepth(root.left), minDepth(root.right))+1;
        //一定注意还有以下这种情况:如果左右中只有一个是null,则返回最大深度
        else return Math.max(minDepth(root.left), minDepth(root.right))+1;
    }
}

BFS iterate:碰到没有子节点的node可以直接返回深度,不用找到最低点。

class Solution {
    public int minDepth(TreeNode root) {
        if(root==null) return 0;
        Queue<TreeNode> queue = new LinkedList<>();
        queue.offer(root);
        int height=0;
        while(!queue.isEmpty()){
            int size = queue.size();
            height++;
            for(int i = size; i>0; i--){
                TreeNode node = queue.poll();
                if(node.left==null && node.right==null) return height;
                if(node.left!=null) queue.offer(node.left);
                if(node.right!=null) queue.offer(node.right);
            }
        }
        return height;
    }
}

101. Symmetric Tree

Iterative solution using one queue and many list.

class Solution {
    public boolean isSymmetric(TreeNode root) {
        if(root==null) return true;
        Queue<TreeNode> queue = new LinkedList<>();
        queue.offer(root);
        while(!queue.isEmpty()){
            int size = queue.size();
            List<Integer> list = new ArrayList<>();
            for(int i = size; i>0; i--){
                TreeNode node = queue.poll();
                if(node!=null) list.add(node.val);
                else list.add(-1);
                if(node!=null) {
                    queue.offer(node.left);
                    queue.offer(node.right);
                }
            }
            for(int i = 0; i<list.size()/2; i++){
                if(list.get(i)!=list.get(list.size()-1-i)) return false;
            }
        }
        return true;
    }

Improve the solution to use only one queue without lists.

class Solution {
    public boolean isSymmetric(TreeNode root) {
        if(root==null) return true;
        Queue<TreeNode> queue = new LinkedList<>();
        queue.offer(root.left);
        queue.offer(root.right);
        while(!queue.isEmpty()){
            TreeNode left = queue.poll();
            TreeNode right = queue.poll();
            if(left==null&&right==null) continue;            
            else if(left==null || right==null) return false;
            else if(left.val!=right.val) return false;
            else{
                queue.offer(left.left);
                queue.offer(right.right);
                queue.offer(left.right);
                queue.offer(right.left);
            }
        }
        return true;
    }
}

DFS recursive solution.

class Solution {
    public boolean isSymmetric(TreeNode root) {
        if(root==null) return true;
        return helper(root.left, root.right);
    }
    public boolean helper(TreeNode left, TreeNode right){
        if(left==null&&right==null) return true;
        else if(left==null || right==null) return false;
        else return (right.val==left.val) && helper(left.left, right.right) 
                                         && helper(left.right, right.left);
    }
}

513. Find Bottom Left Tree Value

思路:

  1. 先dfs找到深度,再bfs找最深一层的第一个。
    改进:2. 直接bfs循环的时候记录每一层第一个的值,最后返回。
    改进:3. bfs从右到左循环,返回整个循环的最后一个node的值。
class Solution {
    //BFS: 找到最后一层最左边的一个 time: O(n) space: O(n)
    public int findBottomLeftValue(TreeNode root) {
        int result=root.val;
        Queue<TreeNode> queue = new LinkedList<>();
        queue.offer(root);
        while(!queue.isEmpty()){
            root = queue.poll();
            if(root.right!=null) queue.offer(root.right);
            if(root.left!=null) queue.offer(root.left);
        }
        return root.val;
    }
}

DFS方法待补充

515. Find Largest Value in Each Tree Row

BFS solution (pass!)

//BFS
class Solution {
    public List<Integer> largestValues(TreeNode root) {
        List<Integer> list = new LinkedList<>();
        if(root==null) return list;
        Queue<TreeNode> queue = new LinkedList<>();
        queue.offer(root);
        while(!queue.isEmpty()){
            int max = Integer.MIN_VALUE;
            for(int i=queue.size(); i>0; i--){
                root = queue.poll();
                if(root.val>max) max=root.val;
                if(root.left!=null) queue.offer(root.left);
                if(root.right!=null) queue.offer(root.right);
            }
            list.add(max);
        }
        return list;
    }
}

DFS

class Solution {
   public List<Integer> largestValues(TreeNode root) {
       List<Integer> list = new ArrayList<>();
       return helper(root, 0, list);
   }
   public List<Integer> helper(TreeNode root, int level, List<Integer> list){
       if(root==null) return list;
       if(list.size()<=level) list.add(root.val);
       else if(root.val > list.get(level)) list.set(level, root.val);
       helper(root.left, level+1, list);
       helper(root.right, level+1, list);
       return list;
   }
}

623. Add One Row to Tree

dfs

class Solution {
    public TreeNode addOneRow(TreeNode root, int v, int d) {
        if(root==null) return null;
        if(d==1){
            TreeNode left = new TreeNode(v);
            left.left=root;
            return left;
        }
        if(d==2){
            TreeNode left = new TreeNode(v);
            left.left = root.left;
            root.left = left;
            TreeNode right = new TreeNode(v);
            right.right = root.right;
            root.right = right;
            return root;
        }
        addOneRow(root.left, v, d-1);
        addOneRow(root.right, v, d-1);
        return root;
    }
}

671. Second Minimum Node In a Binary Tree

DFS

// the tree is non empty
// every node has none or two sub-node
class Solution {
    public int findSecondMinimumValue(TreeNode root) {
        return dfs(root, root.val);
    }
    public int dfs(TreeNode root, int result){
        if(root==null) return -1; //如果没有找到,返回-1
        //如果子节点大于最小值,直接返回子节点的值,不用继续递归
        //因为其子节点的值一定大于等于现在的值
        if(root.val>result) return root.val;
        int left = dfs(root.left, result);
        int right = dfs(root.right, result);
        if(left==-1) return right;
        else if(right==-1) return left;
        //如果左右结果都不是-1, 说明都比最小值大,返回其中较小的
        else return Math.min(left, right);
    }
}

BFS

class Solution {
    public int findSecondMinimumValue(TreeNode root) {
        Queue<TreeNode> queue = new LinkedList<>();
        int smallest = root.val;
        int result = Integer.MAX_VALUE;
        queue.offer(root);
        while(!queue.isEmpty()){
            root = queue.poll();
            //如果这个node和最小值相等,则把它的子节点加入queue
            if(root.val==smallest && root.left!=null){
                queue.offer(root.left);
                queue.offer(root.right);
            }
            //如果当前node大于最小值,不用加入其子节点。
            if(root.val>smallest && root.val<result) result=root.val;
        }
        return result==Integer.MAX_VALUE ? -1 : result;
    }
}

116. Populating Next Right Pointers in Each Node

dfs recursive solution

//all leaves are at the same level, and every parent has two children
public class Solution {
    public void connect(TreeLinkNode root) {
        if(root==null) return;
        if(root.left!=null) {
            root.left.next=root.right;
            if(root.next!=null) root.right.next=root.next.left;
        }
        connect(root.left);
        connect(root.right);
    }
}

bfs without extra space

public class Solution {
    public void connect(TreeLinkNode root) {
        while(root!=null){
            TreeLinkNode leftMost = root;
            while(root!=null && root.left!=null){
                root.left.next=root.right;
                if(root.next!=null) root.right.next=root.next.left;
                root=root.next;
            }
            root=leftMost.left;
        }
    }
}

117. Populating Next Right Pointers in Each Node II

iterative 太复杂了

public class Solution {
    public void connect(TreeLinkNode root) {
        TreeLinkNode leftMost = root;
        //every level
        while(root!=null){
            leftMost=root;
            //every connect in this level
            while(root!=null){
                TreeLinkNode cur = root;
                if(root.right!=null) {
                   if(root.left!=null) root.left.next=root.right;
                   cur=root.right;
                }
                else if(root.left!=null) cur=root.left;
                else{
                    root=root.next;
                    continue;
                }
                TreeLinkNode next = root.next;
                if(next!=null){
                    while(next!=null && next.left==null && next.right==null) next=next.next;
                    if(next==null) break;
                    if(next.left!=null) cur.next=next.left;
                    else if(next.right!=null) cur.next=next.right;
                }
                root=next;
            }
            while(leftMost!=null && leftMost.left==null && leftMost.right==null) leftMost=leftMost.next;
            if(leftMost==null) return;
            if(leftMost.left!=null) root=leftMost.left;
            else root=leftMost.right;
        }
    }
}

用dummy start 重新做

public class Solution {
    public void connect(TreeLinkNode root) {
        TreeLinkNode dummy = new TreeLinkNode(0);
        TreeLinkNode pre = dummy;
        //every level
        while(root!=null){
            if(root.left!=null){
                pre.next=root.left;
                pre=pre.next;
            }
            if(root.right!=null){
                pre.next=root.right;
                pre=pre.next;
            }
            root=root.next;
            //如果遍历到这个level最后一个node,pre.next是下一个level的开头
            if(root==null){
                pre=dummy;
                root=dummy.next;
                //一定要加这一句,否则死循环
                dummy.next=null;
            }
        }
    }
}

235. Lowest Common Ancestor of a Binary Search Tree

class Solution {
    public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
        if(root==null) return root;
        //node的值比pq都小,说明目标节点在它右边
        if(root.val>p.val && root.val>q.val) 
              return lowestCommonAncestor(root.left, p, q);
        //node的值比pq都大,说明目标节点在它左边
        else if (root.val<p.val && root.val<q.val) 
              return lowestCommonAncestor(root.right, p, q);
        //node的值在pq中间,直接返回;如果等于q或者等于p,直接返回
        else return root;
    }
}

236. Lowest Common Ancestor of a Binary Tree

dfs recursive

class Solution {
    public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
        if(root==null || root==p || root==q) return root;
        TreeNode left = lowestCommonAncestor(root.left, p, q);
        TreeNode right = lowestCommonAncestor(root.right, p, q);
        //如果两边都是null:说明两边为空,返回根节点
        //如果左边找到了,右边是空,返回左边;反之返回右边
        //如果两边都找到了,说明根节点左边也有右边也有,返回根节点
        return left==null ? right : (right==null ? left : root);
    }
}

617. Merge Two Binary Trees

//DFS
class Solution {
    public TreeNode mergeTrees(TreeNode t1, TreeNode t2) {
        //当其中一个为空,此节点以下所有节点都变成另一个为根节点的子树
        if(t1==null) return t2;
        if(t2==null) return t1;
        //当两个node都不为空时,t1的值变为两个值之和
        t1.val+=t2.val;
        t1.left = mergeTrees(t1.left, t2.left);
        t1.right = mergeTrees(t1.right, t2.right);
        return t1;
    }
}

654. Maximum Binary Tree

思路:遍历,找到最大值和最大值的index,再在最大值的左边和右边分别找最大值。

//DFS  time: O(n^2) space: O(n)  (pass)
class Solution {
    public TreeNode constructMaximumBinaryTree(int[] nums) {
        return recursive(nums, 0, nums.length-1);
    }
    public TreeNode recursive(int[] nums, int start, int end){
        if(start>end) return null;
        int max = nums[start];
        int index = start;
        for(int i=start; i<=end; i++){
            if(nums[i]>max) {
                max = nums[i];
                index = i;
            }
        }
        TreeNode root = new TreeNode(max);
        root.left=recursive(nums, start, index-1);
        root.right=recursive(nums, index+1, end);
        return root;
    }
}

优化:

//待补充
上一篇下一篇

猜你喜欢

热点阅读