一文理解哈希冲突四种解决方法
哈希冲突的产生原因
哈希是通过对数据进行再压缩,提高效率的一种解决方法。但由于通过哈希函数产生的哈希值是有限的,而数据可能比较多,导致经过哈希函数处理后仍然有不同的数据对应相同的索引值。这时候就产生了哈希冲突(两个值都需要同一个地址索引位置)。
产生哈希冲突的影响因素
装填因子(装填因子=数据总数 / 哈希表长)、哈希函数、处理冲突的方法
解决哈希冲突的四种方法
1.开放地址方法(再散列法)
可以通俗理解为所有的地址都对所有的数值开放,而不是链式地址法的封闭方式,一个数值固定在一个索引地址位置。
p1=hash(key)如果冲突就在p1地址的基础上+1或者散列处理,p2=hash(p1)....
(1)线性探测
按顺序决定值时,如果某数据的值已经存在,则在原来值的基础上往后加一个单位,直至不发生哈希冲突。
(2)再平方探测
按顺序决定值时,如果某数据的值已经存在,则在原来值的基础上先加1的平方个单位,若仍然存在则减1的平方个单位。随之是2的平方,3的平方等等。直至不发生哈希冲突。
和线性探测相比就是改变探测了步长。因为如果都是+1来探测在数据量比较大的情况下,效率会很差。
(3)伪随机探测
按顺序决定值时,如果某数据已经存在,通过随机函数随机生成一个数,在原来值的基础上加上随机数,直至不发生哈希冲突。
2.链式地址法(HashMap的哈希冲突解决方法)
对于相同的值,使用链表进行连接。使用数组存储每一个链表。
优点:
(1)拉链法处理冲突简单,且无堆积现象,即非同义词决不会发生冲突,因此平均查找长度较短;
(2)由于拉链法中各链表上的结点空间是动态申请的,故它更适合于造表前无法确定表长的情况;
(3)开放定址法为减少冲突,要求装填因子α较小,故当结点规模较大时会浪费很多空间。而拉链法中可取α≥1,且结点较大时,拉链法中增加的指针域可忽略不计,因此节省空间;
(4)在用拉链法构造的散列表中,删除结点的操作易于实现。只要简单地删去链表上相应的结点即可。
缺点:
指针占用较大空间时,会造成空间浪费,若空间用于增大散列表规模进而提高开放地址法的效率。
3.建立公共溢出区
建立公共溢出区存储所有哈希冲突的数据。
4.再哈希法
对于冲突的哈希值再次进行哈希处理,直至没有哈希冲突。
可以理解为p=hash(key)如果冲突就p=hash2(key)....
参考文献: