KNN算法Demo
2018-09-03 本文已影响43人
时间里的小恶魔
1, 数据集介绍:
使用系统自带的数据集。
虹膜

150个实例
萼片长度,萼片宽度,花瓣长度,花瓣宽度
(sepal length, sepal width, petal length and petal width)
类别:
Iris setosa, Iris versicolor, Iris virginica.

2. 利用Python的机器学习库sklearn: SkLearnExample.py
from sklearn import neighbors
from sklearn import datasets
knn = neighbors.KNeighborsClassifier()
#得到分类器
iris = datasets.load_iris()
#得到数据集
print( iris)
knn.fit(iris.data, iris.target)
#训练模型
predictedLabel = knn.predict([[0.1, 0.2, 0.3, 0.4]])
print (predictedLabel)
3,自己动手写KNN算法
加载数据
def loadDataset(filename, split, trainingSet = [], testSet = []):
with open(filename, 'r') as csvfile:
lines = csv.reader(csvfile)
dataset = list(lines)
for x in range(len(dataset)-1):
for y in range(4):
dataset[x][y] = float(dataset[x][y])
if random.random() < split:
trainingSet.append(dataset[x])
else:
testSet.append(dataset[x])
计算距离
def euclideanDistance(instance1, instance2, length):
distance = 0
for x in range(length):
distance += pow((instance1[x]-instance2[x]), 2)
return math.sqrt(distance)
计算准确率
def getAccuracy(testSet, predictions):
correct = 0
for x in range(len(testSet)):
if testSet[x][-1] == predictions[x]:
correct += 1
return (correct/float(len(testSet)))*100.0
将训练集和需要测试的样例和K传入,得到与测试样例最近的k个样例,将其类型放入neighbors[]中,返回neighbors
def getNeighbors(trainingSet, testInstance, k):
distances = []
length = len(testInstance)-1
for x in range(len(trainingSet)):
#testinstance
dist = euclideanDistance(testInstance, trainingSet[x], length)
distances.append((trainingSet[x], dist))
#distances.append(dist)
distances.sort(key=operator.itemgetter(1))
neighbors = []
for x in range(k):
neighbors.append(distances[x][0])
return neighbors
用一个字典classVotes,以少数服从多数,将类型最多的一种结果返回
def getResponse(neighbors):
classVotes = {}
for x in range(len(neighbors)):
response = neighbors[x][-1]
if response in classVotes:
classVotes[response] += 1
else:
classVotes[response] = 1
#按降序pai lie
sortedVotes = sorted(classVotes.items(), key=operator.itemgetter(1), reverse=True)
return sortedVotes[0][0]
main函数调用
def main():
#prepare data
trainingSet = []
testSet = []
split = 0.67
loadDataset(r'irisdata.txt', split, trainingSet, testSet)
print ("Train set: "+ repr(len(trainingSet)))
print ('Test set: ' + repr(len(testSet)))
#generate predictions
predictions = []
k = 3
for x in range(len(testSet)):
# trainingsettrainingSet[x]
neighbors = getNeighbors(trainingSet, testSet[x], k)
result = getResponse(neighbors)
predictions.append(result)
print ('>predicted=' + repr(result) + ', actual=' + repr(testSet[x][-1]))
accuracy = getAccuracy(testSet, predictions)
print('Accuracy: ' + repr(accuracy) + '%')
if __name__ == '__main__':
main()
运行结果
