程序员

OC Runtime之Weak(3)---探究NSObject

2017-08-10  本文已影响0人  08a2d4bd26c9

Runtime对于weak_table_t还有一层封装,也就是SideTable。这层封装对于弱引用机制的主要目的是解决线程安全的问题,因为之前也提到weak_table_t的各种操作并不是线程安全的。

struct SideTable {
    spinlock_t slock;
    RefcountMap refcnts;
    weak_table_t weak_table;

    SideTable() {
        memset(&weak_table, 0, sizeof(weak_table));
    }

    ~SideTable() {
        _objc_fatal("Do not delete SideTable.");
    }

    void lock() { slock.lock(); }
    void unlock() { slock.unlock(); }
    void forceReset() { slock.forceReset(); }

    // Address-ordered lock discipline for a pair of side tables.

    template<HaveOld, HaveNew>
    static void lockTwo(SideTable *lock1, SideTable *lock2);
    template<HaveOld, HaveNew>
    static void unlockTwo(SideTable *lock1, SideTable *lock2);
};

RefcountMap用于OC的引用计数机制,此处不表。slock实际上是os_unfair_lock_s类型,用于处理线程安全的问题。SideTable提供的方法都与锁有关。

NSObject的实现中和弱引用相关的的最重要的函数就是storeWeak,其实现如下:

template <HaveOld haveOld, HaveNew haveNew,
          CrashIfDeallocating crashIfDeallocating>
static id 
storeWeak(id *location, objc_object *newObj)
{
    assert(haveOld  ||  haveNew);
    if (!haveNew) assert(newObj == nil);

    Class previouslyInitializedClass = nil;
    id oldObj;
    SideTable *oldTable;
    SideTable *newTable;

    // Acquire locks for old and new values.
    // Order by lock address to prevent lock ordering problems. 
    // Retry if the old value changes underneath us.
 retry:
    if (haveOld) {
        oldObj = *location;
        oldTable = &SideTables()[oldObj];
    } else {
        oldTable = nil;
    }
    if (haveNew) {
        newTable = &SideTables()[newObj];
    } else {
        newTable = nil;
    }

    SideTable::lockTwo<haveOld, haveNew>(oldTable, newTable);

    if (haveOld  &&  *location != oldObj) {
        SideTable::unlockTwo<haveOld, haveNew>(oldTable, newTable);
        goto retry;
    }

    // Prevent a deadlock between the weak reference machinery
    // and the +initialize machinery by ensuring that no 
    // weakly-referenced object has an un-+initialized isa.
    if (haveNew  &&  newObj) {
        Class cls = newObj->getIsa();
        if (cls != previouslyInitializedClass  &&  
            !((objc_class *)cls)->isInitialized()) 
        {
            SideTable::unlockTwo<haveOld, haveNew>(oldTable, newTable);
            _class_initialize(_class_getNonMetaClass(cls, (id)newObj));

            // If this class is finished with +initialize then we're good.
            // If this class is still running +initialize on this thread 
            // (i.e. +initialize called storeWeak on an instance of itself)
            // then we may proceed but it will appear initializing and 
            // not yet initialized to the check above.
            // Instead set previouslyInitializedClass to recognize it on retry.
            previouslyInitializedClass = cls;

            goto retry;
        }
    }

    // Clean up old value, if any.
    if (haveOld) {
        weak_unregister_no_lock(&oldTable->weak_table, oldObj, location);
    }

    // Assign new value, if any.
    if (haveNew) {
        newObj = (objc_object *)
            weak_register_no_lock(&newTable->weak_table, (id)newObj, location, 
                                  crashIfDeallocating);
        // weak_register_no_lock returns nil if weak store should be rejected

        // Set is-weakly-referenced bit in refcount table.
        if (newObj  &&  !newObj->isTaggedPointer()) {
            newObj->setWeaklyReferenced_nolock();
        }

        // Do not set *location anywhere else. That would introduce a race.
        *location = (id)newObj;
    }
    else {
        // No new value. The storage is not changed.
    }
    
    SideTable::unlockTwo<haveOld, haveNew>(oldTable, newTable);

    return (id)newObj;
}

首先请忽视C++奇怪的各种语法,比如为什么template中的枚举会跑到参数里去(手动哭泣)。haveOld和haveNew主要用来控制具体的操作,比如给一个对象新增一个弱引用,或者是删除一个弱引用。函数的前半部分主要在处理线程安全和类加载的问题,和弱引用的逻辑关系不大。我们从 if (haveOld) { 这一行看起,如果haveOld是true,则说明参数里的弱引用已经指向了一个对象,需要调用weak_unregister_no_lock方法解除关联。如果haveNew是true,则调用weak_register_no_lock关联目标对象和弱应用,并且将弱引用设置为指向目标对象。因此通过设置haveOld和haveNew不同的组合,可以控制该函数完成不同的操作。

纯逻辑来看,这一部分相对简单,但考虑到线程安全,类的初始化,Tagged Pointer等等细节,要处理的地方还是非常多。这一系列的文章主要介绍了弱引用机制的实现,帮助大家对弱引用有一个更详细更立体的理解,未涉及到太多的具体的底层技术细节,如果读者有兴趣的话,可以继续深入探究。后续的runtime相关的文章也可能会继续提及。

上一篇下一篇

猜你喜欢

热点阅读