化学动力学

对行反应反应物和生成物浓度相等所需时间的推导

2020-04-30  本文已影响0人  亾戉

对行反应
A \rightleftharpoons B

设开始时反应物A的浓度为c_{A, 0},生成物B的浓度c_{B} = 0

任意时刻有
c_A + c_B = c_{A, 0}

正反应A \to B的速率为
v_1 = k_1 c_A

逆反应B \to A的速率为
v_{- 1} = k_{- 1} c_B = k_{- 1} (c_{A, 0} - c_A)

总反应的速率为
\begin{align} v = - \dfrac{\mathrm{d}c_A}{\mathrm{d}t} & = v_1 - v_{- 1} \\ & = k_1 c_A - k_{- 1} (c_{A, 0} - c_A) \\ & = (k_1 + k_{- 1}) c_A - k_{- 1} c_{A, 0} \end{align}

c_A随着t的变化而变化,k_1, k_{- 1}, c_{A, 0}不随t的变化而变化。即c_At的函数,k_1, k_{- 1}, c_{A, 0}不是t的函数。

等式v = (k_1 + k_{- 1}) c_A - k_{- 1} c_{A, 0}两边对t求一阶导
\begin{align} \dfrac{\mathrm{d}v}{\mathrm{d}t} & = \dfrac{\mathrm{d}}{\mathrm{d}t} \left[ (k_1 + k_{- 1}) c_A - k_{- 1} c_{A, 0} \right] \\ & = (k_1 + k_{- 1}) \dfrac{\mathrm{d}c_A}{\mathrm{d}t} \end{align}

\mathrm{d}c_A / \mathrm{d}t = - v代入上式
\dfrac{\mathrm{d}v}{\mathrm{d}t} = (k_1 + k_{- 1}) (- v)

分离变量
\dfrac 1v \mathrm{d}v = - (k_1 + k_{- 1}) \mathrm{d}t

t的变化范围是t = 0到t = t |_{c_A = c_B}v的变化范围是v |_{t = 0}到v |_{t = t |_{c_A = c_B}},其中v |_{t = 0}和v |_{t = t |_{c_A = c_B}}分别为
\begin{align} v |_{t = 0} & = k_1 c_{A, 0} \\ & = k_1 (c_A + c_B) \\ & = k_1 (c_A + c_A) \\ & = 2k_1 c_A \end{align}

\begin{align} v |_{t = t |_{c_A = c_B}} & = (k_1 + k_{- 1}) c_A - k_{- 1} c_{A, 0} \\ & = k_1 c_A + k_{- 1} c_A - k_{- 1} c_A - k_{- 1} c_B \\ & = k_1 c_A - k_{- 1} c_B \\ & = k_1 c_A - k_{- 1} c_A \\ & = (k_1 - k_{- 1}) c_A \end{align}

\dfrac 1v \mathrm{d}v = - (k_1 + k_{- 1}) \mathrm{d}t两边求定积分
\int_{2k_1 c_A}^{(k_1 - k_{- 1}) c_A} \dfrac 1v \mathrm{d}v = - (k_1 + k_{- 1}) \int_{0}^{t |_{c_A = c_B}} \mathrm{d}t

解得
[\ln v]_{2k_1 c_A}^{(k_1 - k_{- 1}) c_A} = - (k_1 + k_{- 1}) t |_{c_A = c_B}


\begin{align} t |_{c_A = c_B} & = - \dfrac{1}{k_1 + k_{- 1}} \ln \dfrac{(k_1 - k_{- 1}) c_A}{2k_1 c_A} \\ & = \dfrac{1}{k_1 + k_{- 1}} \ln \dfrac{2k_1}{k_1 - k_{- 1}} \end{align}

上一篇 下一篇

猜你喜欢

热点阅读