Android的Handler消息处理机制
实现android的消息机制在应用层会设置 Handler, Message ,MessageQueue ,Looper 四个类
仔细的分析一下他们的与源码就会理解很多道理
Looper
正常的初始化一个线程,运行完之后就会立刻退出,但是有时候我们不想让线程退出,因为可能我们还有消息需要这个线程处理,
因此,Looper就应运而生了。
看下Looper的核心代码
//构造函数初始化MessageQueue
private Looper(boolean quitAllowed) {
mQueue = new MessageQueue(quitAllowed);
mThread = Thread.currentThread();
}
public static void loop() {
final Looper me = myLooper();
if (me == null) {
throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
}
final MessageQueue queue = me.mQueue;
// Make sure the identity of this thread is that of the local process,
// and keep track of what that identity token actually is.
Binder.clearCallingIdentity();
final long ident = Binder.clearCallingIdentity();
for (;;) {
Message msg = queue.next(); // might block
if (msg == null) {
// No message indicates that the message queue is quitting.
return;
}
// This must be in a local variable, in case a UI event sets the logger
final Printer logging = me.mLogging;
if (logging != null) {
logging.println(">>>>> Dispatching to " + msg.target + " " +
msg.callback + ": " + msg.what);
}
final long traceTag = me.mTraceTag;
if (traceTag != 0 && Trace.isTagEnabled(traceTag)) {
Trace.traceBegin(traceTag, msg.target.getTraceName(msg));
}
try {
msg.target.dispatchMessage(msg);
} finally {
if (traceTag != 0) {
Trace.traceEnd(traceTag);
}
}
if (logging != null) {
logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);
}
// Make sure that during the course of dispatching the
// identity of the thread wasn't corrupted.
final long newIdent = Binder.clearCallingIdentity();
if (ident != newIdent) {
Log.wtf(TAG, "Thread identity changed from 0x"
+ Long.toHexString(ident) + " to 0x"
+ Long.toHexString(newIdent) + " while dispatching to "
+ msg.target.getClass().getName() + " "
+ msg.callback + " what=" + msg.what);
}
msg.recycleUnchecked();
}
}
public static @Nullable Looper myLooper() {
return sThreadLocal.get();
}
private static void prepare(boolean quitAllowed) {
if (sThreadLocal.get() != null) {
throw new RuntimeException("Only one Looper may be created per thread");
}
sThreadLocal.set(new Looper(quitAllowed));
}
这里先帖一下ActivityThread的main方法中有关Looper的片段
public static void main(String[] args) {
....
Looper.prepareMainLooper();
ActivityThread thread = new ActivityThread();
thread.attach(false);
if (sMainThreadHandler == null) {
sMainThreadHandler = thread.getHandler();
}
if (false) {
Looper.myLooper().setMessageLogging(new
LogPrinter(Log.DEBUG, "ActivityThread"));
}
// End of event ActivityThreadMain.
Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
Looper.loop();
....
}
Looper这个类比较简单,主要就是着三个方法,
prepare()方法初始化Looper,并将Looper放到ThreadLocal保存起来,prepare()方法只能调用一次,执行业务代码,最后执行loop()进入循环。
在ActivityThread的main方法中也是这样的。
这个ThreadLocal很关键,不太明白可以查一下
主要看loop方法都做了啥?
-
首先从myLooper()方法得到ThreadLocal中存储的Looper实例,这个Looper的实例就是ActivityThread的main函数中初始化的。
-
在通过looper得到MessageQueue,这个MessageQueue是在Looper的构造函数中初始化的,MessageQueue暂时认为它就是一个数组,里面有很多Message,
还有一个next()方法返回下一个Message,所以就一这样理解了,for 循环就是不停的在区数组中的下一个元素 -
如果消息部位null,就会调用msg.target.dispatchMessage(msg); 这个target就是你用你发送消息的handler,最后消息会调用handler.handleMessage()
以上是假设handler在Ui线程创建的,如果Handler在子线程创建,消息不会发到UI线程的。至于为什么就必须看Handler的源码了
Handler
要明白上一个问题就要看一下Handler的构造函数了
public Handler() {
this(null, false);
}
public Handler(Callback callback) {
this(callback, false);
}
public Handler(Looper looper) {
this(looper, null, false);
}
public Handler(Looper looper, Callback callback) {
this(looper, callback, false);
}
public Handler(boolean async) {
this(null, async);
}
public Handler(Callback callback, boolean async) {
if (FIND_POTENTIAL_LEAKS) {
final Class<? extends Handler> klass = getClass();
if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) &&
(klass.getModifiers() & Modifier.STATIC) == 0) {
Log.w(TAG, "The following Handler class should be static or leaks might occur: " +
klass.getCanonicalName());
}
}
mLooper = Looper.myLooper();
if (mLooper == null) {
throw new RuntimeException(
"Can't create handler inside thread that has not called Looper.prepare()");
}
mQueue = mLooper.mQueue;
mCallback = callback;
mAsynchronous = async;
}
public Handler(Looper looper, Callback callback, boolean async) {
mLooper = looper;
mQueue = looper.mQueue;
mCallback = callback;
mAsynchronous = async;
}
可以看出构造函数有两类,一类是含Looper的,一类是不含Looper的,如果不含Looper最终都会调用Handler(Callback callback, boolean async)
这里给Looper和MessageQueue赋值,Looper的赋值调用Looper.myLooper()。如果返回是null的话,只能是在非UI线程中初始化Handler,且之前还没有
调用Looper的prepare()方法,这时,程序一般会crash,但是7.0中不会,这个我也不知道,断点调试发现,在线程中初始化Handler,初始化之前调用
Looper.myLooper()为null,但是初始化之后有值了,但是和UI线程的是两个不同的实例。
如果含Looper会将这个Looper赋给Handler的Looper,MessageQueue也从这个Looper中得到。
所以可以看出Handler和Looper是绑定的,Handler跟Activity或者线程是没有关系的,
Handler发送的消息最终会发给初始化Handler时的Looper的实例的loop(),也就是Handler的mLooper变量所指向的Looper
在看handler的发送消息,直接看enqueueMessage()这个方法,因为最终都会调用这个方法
private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {
msg.target = this;
if (mAsynchronous) {
msg.setAsynchronous(true);
}
return queue.enqueueMessage(msg, uptimeMillis);
}
这个方法其实就是调用Message的enqueueMessage(msg, uptimeMillis)方法
MessageQueue
这个类的代码可以说是他们四个最复杂的了,大概有900行,我们了解一下主要就可以了,太细节的我也无法理解
重要的两个方法enqueueMessage(Message msg, long when) 和 next()这两个方法需要理解
enqueueMessage
boolean enqueueMessage(Message msg, long when) {
if (msg.target == null) {
throw new IllegalArgumentException("Message must have a target.");
}
if (msg.isInUse()) {
throw new IllegalStateException(msg + " This message is already in use.");
}
synchronized (this) {
if (mQuitting) {
IllegalStateException e = new IllegalStateException(
msg.target + " sending message to a Handler on a dead thread");
Log.w(TAG, e.getMessage(), e);
msg.recycle();
return false;
}
msg.markInUse();
msg.when = when;
Message p = mMessages;
boolean needWake;
if (p == null || when == 0 || when < p.when) {
// New head, wake up the event queue if blocked.
msg.next = p;
mMessages = msg;
needWake = mBlocked;
} else {
// Inserted within the middle of the queue. Usually we don't have to wake
// up the event queue unless there is a barrier at the head of the queue
// and the message is the earliest asynchronous message in the queue.
needWake = mBlocked && p.target == null && msg.isAsynchronous();
Message prev;
for (;;) {
prev = p;
p = p.next;
if (p == null || when < p.when) {
break;
}
if (needWake && p.isAsynchronous()) {
needWake = false;
}
}
msg.next = p; // invariant: p == prev.next
prev.next = msg;
}
// We can assume mPtr != 0 because mQuitting is false.
if (needWake) {
nativeWake(mPtr);
}
}
return true;
}
这个方法的主要功能是将消息放到队列中。忽略掉异常处理和进程处理后本质就是一个普通的入队列算法,分析一下入队怎么实现的?
从
Message p = mMessages
开始,mMessages是MessageQueue的成员变量,找一个临时变量p指向mMessages。
1.如果p=null;即队列中的以一个元素,直接将传入的msg赋值给mMessages,因为第一个嘛,所以msg的next肯定是null
2.如果mMessages不为null,即对列中有元素,假如我们认为已经有3个元素。按照队列先进先出的原则,这个三个元素结构应该是 Snip20171101_1.png
新msg肯定是要赋值给最后边的Msg的next的。for循环是找到队列中的元素的next为空的那个,其实就是队列的最后一个,然后break跳出循环
msg.next = p 这个p其实就是null,不是bull的话不可能走到这行代码,prev就是next为null,队列的最后一个元素。
prev.next = msg 将新元素放到队列尾部
3.入队完成
next()
Message next() {
// Return here if the message loop has already quit and been disposed.
// This can happen if the application tries to restart a looper after quit
// which is not supported.
final long ptr = mPtr;
if (ptr == 0) {
return null;
}
int pendingIdleHandlerCount = -1; // -1 only during first iteration
int nextPollTimeoutMillis = 0;
for (;;) {
if (nextPollTimeoutMillis != 0) {
Binder.flushPendingCommands();
}
nativePollOnce(ptr, nextPollTimeoutMillis);
synchronized (this) {
// Try to retrieve the next message. Return if found.
final long now = SystemClock.uptimeMillis();
Message prevMsg = null;
Message msg = mMessages;
if (msg != null && msg.target == null) {
// Stalled by a barrier. Find the next asynchronous message in the queue.
do {
prevMsg = msg;
msg = msg.next;
} while (msg != null && !msg.isAsynchronous());
}
if (msg != null) {
if (now < msg.when) {
// Next message is not ready. Set a timeout to wake up when it is ready.
nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
} else {
// Got a message.
mBlocked = false;
if (prevMsg != null) {
prevMsg.next = msg.next;
} else {
mMessages = msg.next;
}
msg.next = null;
if (DEBUG) Log.v(TAG, "Returning message: " + msg);
msg.markInUse();
return msg;
}
} else {
// No more messages.
nextPollTimeoutMillis = -1;
}
// Process the quit message now that all pending messages have been handled.
if (mQuitting) {
dispose();
return null;
}
// If first time idle, then get the number of idlers to run.
// Idle handles only run if the queue is empty or if the first message
// in the queue (possibly a barrier) is due to be handled in the future.
if (pendingIdleHandlerCount < 0
&& (mMessages == null || now < mMessages.when)) {
pendingIdleHandlerCount = mIdleHandlers.size();
}
if (pendingIdleHandlerCount <= 0) {
// No idle handlers to run. Loop and wait some more.
mBlocked = true;
continue;
}
if (mPendingIdleHandlers == null) {
mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)];
}
mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers);
}
// Run the idle handlers.
// We only ever reach this code block during the first iteration.
for (int i = 0; i < pendingIdleHandlerCount; i++) {
final IdleHandler idler = mPendingIdleHandlers[i];
mPendingIdleHandlers[i] = null; // release the reference to the handler
boolean keep = false;
try {
keep = idler.queueIdle();
} catch (Throwable t) {
Log.wtf(TAG, "IdleHandler threw exception", t);
}
if (!keep) {
synchronized (this) {
mIdleHandlers.remove(idler);
}
}
}
// Reset the idle handler count to 0 so we do not run them again.
pendingIdleHandlerCount = 0;
// While calling an idle handler, a new message could have been delivered
// so go back and look again for a pending message without waiting.
nextPollTimeoutMillis = 0;
}
}
next的代码比较复杂,假如我们不考虑异常,并发和多进程的的因素,主要代码就在for循环中的synchronized当中。
1.如果msg不为null,最终会执行return返回Msg终止循环,这个返回就会让Looper.loop()中的queue.next()得到下一个消息,从而将消息交给Handler处理
2.如果为空,就不会return 就会一直循环下去
这里就有一个问题了,即使没有消息,我们没有看到wait()语句,意味着for循环在高速的运转着,这样就会一直占用着cup。而事实上,我们把手机放那cup的使用率一般都在0%
仔细看代码之后会发现,MessageQueue 有一个mBlocked 变量,
3.这个变量有一段注释
Indicates whether next() is blocked waiting in pollOnce() with a non-zero timeout.
大概意思就是说这个变量控制next() 是否被block,我猜具体的实现挂起应该是在
private native void nativePollOnce(long ptr, int timeoutMillis);
这是一个native方法中了。
Message
Message可以说简单也可以说很复杂,因为涉及到进程通信,线程之间的并发,消息复用的问题就很复杂了。但是我们可以先忽略掉这些,一下子就非常简单了,
这样我们完全可以把Message当作一个Bean来看待了。
根据以上的假设来总结一下一个Message的生命周期
现在再来理解一下Android的消息处理机制,我们来举个例子来追踪一下一个Message的生命周期。
场景是这样的:
假如现在android不再发消息,消息队列中也是空的,我们在一个线程中,利用handler发送一个消息,这个消息会怎么处理呢?
Handler肯定是在UI线程中创建的,原因在Handler的部分已经说过了。
1.创建一个消息Message
2.Handler调用send发送消息,最终会调用enqueueMessage(msg),将消息交给了MessageQueue
3.在MessageQueue进行入队操作,消息被MessageQueue存着。
4.Looper在main函数的时候启动,一直在循环着,假设loop()方法刚好执行到了
Message msg = queue.next();
那么刚才入队的msg又要被拿出来了,这是loop()方法就有了msg,接着找到msg的target,调用dispatchMessage
5.handler的dispatchMessage方法将消息交给了handleMessage方法
6.handleMessage 处理Message后消息就被销毁了 END
其实不存在这样一个Message不存在这样一个生命周期的,因为android还考虑到Message的复用,进程通信等,这只是一个理想环境下的生命周期。