单细胞测序专题集合单细胞测序

单细胞GSEA分析运行记录2

2021-03-27  本文已影响0人  Seurat_Satija
> #加载R包
> library(tidyverse)
-- Attaching packages ------------------------------------------------------------------------- tidyverse 1.3.0 --
√ ggplot2 3.3.3     √ purrr   0.3.4
√ tibble  3.0.4     √ dplyr   1.0.2
√ tidyr   1.1.2     √ stringr 1.4.0
√ readr   1.4.0     √ forcats 0.5.0
-- Conflicts ---------------------------------------------------------------------------- tidyverse_conflicts() --
x dplyr::filter() masks stats::filter()
x dplyr::lag()    masks stats::lag()
> library(Seurat)
Registered S3 method overwritten by 'spatstat':
  method     from
  print.boxx cli 
Attaching SeuratObject
Warning message:
程辑包‘Seurat’是用R版本4.0.4 来建造的 
> workflow
Error: object 'workflow' not found
> # Load the PBMC dataset
> pbmc.data <- Read10X(data.dir = "pbmc5k_v3_filtered_feature_bc_matrix/")
> #workflow
> # Load the PBMC dataset
> pbmc.data <- Read10X(data.dir = "pbmc5k_v3_filtered_feature_bc_matrix/")
> # Initialize the Seurat object with the raw (non-normalized data).
> pbmc <- CreateSeuratObject(counts = pbmc.data, project = "pbmc5k", min.cells = 3, min.features = 200)
> pbmc
An object of class Seurat 
18791 features across 4962 samples within 1 assay 
Active assay: RNA (18791 features, 0 variable features)
> #QC
> pbmc[["percent.mt"]] <- PercentageFeatureSet(pbmc, pattern = "^MT-")
> # Visualize QC metrics as a violin plot
> VlnPlot(pbmc, features = c("nFeature_RNA", "nCount_RNA", "percent.mt"), ncol = 3)
> pbmc <- subset(pbmc, subset = nFeature_RNA > 200 & nFeature_RNA < 5000 & percent.mt < 25)
> #Normalization
> pbmc <- NormalizeData(pbmc, normalization.method = "LogNormalize", scale.factor = 10000)
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
> #高变基因选择
> pbmc <- FindVariableFeatures(pbmc, selection.method = "vst", nfeatures = 2000)
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
> #标准化
> all.genes <- rownames(pbmc)
> pbmc <- ScaleData(pbmc, features = all.genes)
Centering and scaling data matrix
  |========================================================================================================| 100%
> #去除MT,重新进行标准化
> pbmc <- ScaleData(pbmc, vars.to.regress = "percent.mt")
Regressing out percent.mt
  |========================================================================================================| 100%
Centering and scaling data matrix
  |========================================================================================================| 100%
Warning message:
In strsplit(conditionMessage(e), "\n") :
  input string 1 is invalid in this locale
> #PCA
> pbmc <- RunPCA(pbmc, features = VariableFeatures(object = pbmc), verbose = FALSE)
> #聚类
> pbmc <- FindNeighbors(pbmc, dims = 1:20)
Computing nearest neighbor graph
Computing SNN
> pbmc <- FindClusters(pbmc, resolution = 0.5)
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 4595
Number of edges: 165660

Running Louvain algorithm...
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Maximum modularity in 10 random starts: 0.9001
Number of communities: 13
Elapsed time: 0 seconds
> #可视化
> pbmc <- RunUMAP(pbmc, dims = 1:20)
Warning: The default method for RunUMAP has changed from calling Python UMAP via reticulate to the R-native UWOT using the cosine metric
To use Python UMAP via reticulate, set umap.method to 'umap-learn' and metric to 'correlation'
This message will be shown once per session
13:05:18 UMAP embedding parameters a = 0.9922 b = 1.112
13:05:18 Read 4595 rows and found 20 numeric columns
13:05:18 Using Annoy for neighbor search, n_neighbors = 30
13:05:18 Building Annoy index with metric = cosine, n_trees = 50
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
13:05:19 Writing NN index file to temp file C:\Users\Nano\AppData\Local\Temp\RtmpMfsJdO\file2d3c3a9c70be
13:05:19 Searching Annoy index using 1 thread, search_k = 3000
13:05:21 Annoy recall = 100%
13:05:21 Commencing smooth kNN distance calibration using 1 thread
13:05:22 Initializing from normalized Laplacian + noise
13:05:23 Commencing optimization for 500 epochs, with 192042 positive edges
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
13:05:44 Optimization finished
> pbmc<- RunTSNE(pbmc, dims = 1:20)
> ## after we run UMAP and TSNE, there are more entries in the reduction slot
> str(pbmc@reductions)
List of 3
 $ pca :Formal class 'DimReduc' [package "SeuratObject"] with 9 slots
  .. ..@ cell.embeddings           : num [1:4595, 1:50] -31.75 -27.91 4.87 11.28 -30.22 ...
  .. .. ..- attr(*, "dimnames")=List of 2
  .. .. .. ..$ : chr [1:4595] "AAACCCAAGCGTATGG-1" "AAACCCAGTCCTACAA-1" "AAACGCTAGGGCATGT-1" "AAACGCTGTAGGTACG-1" ...
  .. .. .. ..$ : chr [1:50] "PC_1" "PC_2" "PC_3" "PC_4" ...
  .. ..@ feature.loadings          : num [1:2000, 1:50] -0.014365 -0.000161 0.005058 -0.013235 -0.058571 ...
  .. .. ..- attr(*, "dimnames")=List of 2
  .. .. .. ..$ : chr [1:2000] "FCER1A" "PPBP" "IGLC2" "C1QA" ...
  .. .. .. ..$ : chr [1:50] "PC_1" "PC_2" "PC_3" "PC_4" ...
  .. ..@ feature.loadings.projected: num[0 , 0 ] 
  .. ..@ assay.used                : chr "RNA"
  .. ..@ global                    : logi FALSE
  .. ..@ stdev                     : num [1:50] 15.65 7.92 6.7 5.5 4.53 ...
  .. ..@ key                       : chr "PC_"
  .. ..@ jackstraw                 :Formal class 'JackStrawData' [package "SeuratObject"] with 4 slots
  .. .. .. ..@ empirical.p.values     : num[0 , 0 ] 
  .. .. .. ..@ fake.reduction.scores  : num[0 , 0 ] 
  .. .. .. ..@ empirical.p.values.full: num[0 , 0 ] 
  .. .. .. ..@ overall.p.values       : num[0 , 0 ] 
  .. ..@ misc                      :List of 1
  .. .. ..$ total.variance: num 1563
 $ umap:Formal class 'DimReduc' [package "SeuratObject"] with 9 slots
  .. ..@ cell.embeddings           : num [1:4595, 1:2] -7.7 -9.575 -5.893 0.395 -7.803 ...
  .. .. ..- attr(*, "scaled:center")= num [1:2] -1.1672 0.0318
  .. .. ..- attr(*, "dimnames")=List of 2
  .. .. .. ..$ : chr [1:4595] "AAACCCAAGCGTATGG-1" "AAACCCAGTCCTACAA-1" "AAACGCTAGGGCATGT-1" "AAACGCTGTAGGTACG-1" ...
  .. .. .. ..$ : chr [1:2] "UMAP_1" "UMAP_2"
  .. ..@ feature.loadings          : num[0 , 0 ] 
  .. ..@ feature.loadings.projected: num[0 , 0 ] 
  .. ..@ assay.used                : chr "RNA"
  .. ..@ global                    : logi TRUE
  .. ..@ stdev                     : num(0) 
  .. ..@ key                       : chr "UMAP_"
  .. ..@ jackstraw                 :Formal class 'JackStrawData' [package "SeuratObject"] with 4 slots
  .. .. .. ..@ empirical.p.values     : num[0 , 0 ] 
  .. .. .. ..@ fake.reduction.scores  : num[0 , 0 ] 
  .. .. .. ..@ empirical.p.values.full: num[0 , 0 ] 
  .. .. .. ..@ overall.p.values       : num[0 , 0 ] 
  .. ..@ misc                      : list()
 $ tsne:Formal class 'DimReduc' [package "SeuratObject"] with 9 slots
  .. ..@ cell.embeddings           : num [1:4595, 1:2] -7.65 10.12 -32.29 -22.12 1.52 ...
  .. .. ..- attr(*, "dimnames")=List of 2
  .. .. .. ..$ : chr [1:4595] "AAACCCAAGCGTATGG-1" "AAACCCAGTCCTACAA-1" "AAACGCTAGGGCATGT-1" "AAACGCTGTAGGTACG-1" ...
  .. .. .. ..$ : chr [1:2] "tSNE_1" "tSNE_2"
  .. ..@ feature.loadings          : num[0 , 0 ] 
  .. ..@ feature.loadings.projected: num[0 , 0 ] 
  .. ..@ assay.used                : chr "RNA"
  .. ..@ global                    : logi TRUE
  .. ..@ stdev                     : num(0) 
  .. ..@ key                       : chr "tSNE_"
  .. ..@ jackstraw                 :Formal class 'JackStrawData' [package "SeuratObject"] with 4 slots
  .. .. .. ..@ empirical.p.values     : num[0 , 0 ] 
  .. .. .. ..@ fake.reduction.scores  : num[0 , 0 ] 
  .. .. .. ..@ empirical.p.values.full: num[0 , 0 ] 
  .. .. .. ..@ overall.p.values       : num[0 , 0 ] 
  .. ..@ misc                      : list()
> DimPlot(pbmc, reduction = "umap", label = TRUE)
> #查找marker基因
> pbmc.markers <- FindAllMarkers(pbmc, only.pos = TRUE, min.pct = 0.25, logfc.threshold = 0.25)
Calculating cluster 0
  |++++++++++++++++++++++++++++++++++++++++++++++++++| 100% elapsed=04s  
Calculating cluster 1
  |++++++++++++++++++++++++++++++++++++++++++++++++++| 100% elapsed=28s  
Calculating cluster 2
  |++++++++++++++++++++++++++++++++++++++++++++++++++| 100% elapsed=03s  
Calculating cluster 3
  |++++++++++++++++++++++++++++++++++++++++++++++++++| 100% elapsed=22s  
Calculating cluster 4
  |++++++++++++++++++++++++++++++++++++++++++++++++++| 100% elapsed=06s  
Calculating cluster 5
  |++++++++++++++++++++++++++++++++++++++++++++++++++| 100% elapsed=06s  
Calculating cluster 6
  |++++++++++++++++++++++++++++++++++++++++++++++++++| 100% elapsed=06s  
Calculating cluster 7
  |++++++++++++++++++++++++++++++++++++++++++++++++++| 100% elapsed=23s  
Calculating cluster 8
  |++++++++++++++++++++++++++++++++++++++++++++++++++| 100% elapsed=09s  
Calculating cluster 9
  |++++++++++++++++++++++++++++++++++++++++++++++++++| 100% elapsed=04s  
Calculating cluster 10
  |++++++++++++++++++++++++++++++++++++++++++++++++++| 100% elapsed=16s  
Calculating cluster 11
  |++++++++++++++++++++++++++++++++++++++++++++++++++| 100% elapsed=09s  
Calculating cluster 12
  |++++++++++++++++++++++++++++++++++++++++++++++++++| 100% elapsed=30s  
> saveRDS(pbmc, "pbmc_5k_v3.rds")
> saveRDS(pbmc, "pbmc_5k_v3.rds",compress = TRUE)
> saveRDS(pbmc, "pbmc_5k_v3.rds",compress = F)
> #如图所示在处理以后,进行细胞分群后可以分为14个细胞亚群,分别为cluster 0-13。
> write.csv(pbmc.markers,file = 'pbmc.markers.csv')
> library(Seurat)
> library(patchwork)
> p1 <- DimPlot(pbmc, reduction = "umap", label = TRUE)
> p1 <- DimPlot(pbmc, reduction = "umap", label = TRUE)
> ggsave("DimPlot1.pdf", plot=p1, width=8, height=6)
> ggsave("DimPlot1.png", plot=p1, width=8, height=6)
> library(Seurat)
> pbmc<- readRDS("pbmc_5k_v3.rds")
> #library(devtools)
> #install_github('immunogenomics/presto')
> library(presto)
Error in library(presto) : 不存在叫‘presto’这个名字的程辑包
> install_github('immunogenomics/presto')
Error in install_github("immunogenomics/presto") : 
  could not find function "install_github"
> library(devtools)
载入需要的程辑包:usethis
Warning message:
程辑包‘devtools’是用R版本4.0.4 来建造的 
> library(devtools)
> install_github('immunogenomics/presto')
Downloading GitHub repo immunogenomics/presto@HEAD
immunogenomics-presto-052085d/data/object_sce.rda: truncated gzip input
tar.exe: Error exit delayed from previous errors.
Error: Failed to install 'presto' from GitHub:
  Does not appear to be an R package (no DESCRIPTION)
In addition: Warning messages:
1: In utils::untar(tarfile, ...) :
  ‘tar.exe -xf "C:\Users\Nano\AppData\Local\Temp\RtmpMfsJdO\file2d3c26343827.tar.gz" -C "C:/Users/Nano/AppData/Local/Temp/RtmpMfsJdO/remotes2d3c40465af0"’ returned error code 1
2: In system(cmd, intern = TRUE) :
  running command 'tar.exe -tf "C:\Users\Nano\AppData\Local\Temp\RtmpMfsJdO\file2d3c26343827.tar.gz"' had status 1
> library(devtools)
> install_github('immunogenomics/presto')
Downloading GitHub repo immunogenomics/presto@HEAD
These packages have more recent versions available.
It is recommended to update all of them.
Which would you like to update?

 1: All                                           
 2: CRAN packages only                            
 3: None                                          
 4: Rcpp         (1.0.5      -> 1.0.6     ) [CRAN]
 5: utf8         (1.1.4      -> 1.2.1     ) [CRAN]
 6: crayon       (1.3.4      -> 1.4.1     ) [CRAN]
 7: cli          (2.2.0      -> 2.3.1     ) [CRAN]
 8: pillar       (1.4.7      -> 1.5.1     ) [CRAN]
 9: fansi        (0.4.1      -> 0.4.2     ) [CRAN]
10: lifecycle    (0.2.0      -> 1.0.0     ) [CRAN]
11: farver       (2.0.3      -> 2.1.0     ) [CRAN]
12: withr        (2.3.0      -> 2.4.1     ) [CRAN]
13: tibble       (3.0.4      -> 3.1.0     ) [CRAN]
14: rlang        (0.4.9      -> 0.4.10    ) [CRAN]
15: isoband      (0.2.3      -> 0.2.4     ) [CRAN]
16: fastmap      (1.0.1      -> 1.1.0     ) [CRAN]
17: cachem       (1.0.1      -> 1.0.4     ) [CRAN]
18: memoise      (1.1.0      -> 2.0.0     ) [CRAN]
19: mime         (0.9        -> 0.10      ) [CRAN]
20: RSQLite      (2.2.2      -> 2.2.4     ) [CRAN]
21: DBI          (1.1.0      -> 1.1.1     ) [CRAN]
22: XML          (3.99-0.5   -> 3.99-0.6  ) [CRAN]
23: formatR      (1.7        -> 1.8       ) [CRAN]
24: matrixStats  (0.57.0     -> 0.58.0    ) [CRAN]
25: RCurl        (1.98-1.2   -> 1.98-1.3  ) [CRAN]
26: DelayedArray (0.16.0     -> 0.16.3    ) [CRAN]
27: GenomeInfoDb (1.26.2     -> 1.26.4    ) [CRAN]
28: MatrixGen... (1.2.0      -> 1.2.1     ) [CRAN]
29: RcppArmad... (0.10.1.2.0 -> 0.10.2.2.0) [CRAN]
30: cpp11        (0.2.4      -> 0.2.6     ) [CRAN]
31: dplyr        (1.0.2      -> 1.0.5     ) [CRAN]
32: DESeq2       (1.30.0     -> 1.30.1    ) [CRAN]
33: tidyr        (1.1.2      -> 1.1.3     ) [CRAN]
34: data.table   (1.13.6     -> 1.14.0    ) [CRAN]

Enter one or more numbers, or an empty line to skip updates:3
√  checking for file 'C:\Users\Nano\AppData\Local\Temp\RtmpMfsJdO\remotes2d3c24d31e5c\immunogenomics-presto-052085d/DESCRIPTION' ...
-  preparing 'presto':
√  checking DESCRIPTION meta-information ... 
-  cleaning src
-  checking for LF line-endings in source and make files and shell scripts
-  checking for empty or unneeded directories
-  looking to see if a 'data/datalist' file should be added
-  building 'presto_1.0.0.tar.gz'
   
Installing package into ‘C:/Users/Nano/Documents/R/win-library/4.0’
(as ‘lib’ is unspecified)
* installing *source* package 'presto' ...
** using staged installation
** libs
"C:/rtools40/mingw64/bin/"g++  -std=gnu++11 -I"C:/PROGRA~1/R/R-40~1.3/include" -DNDEBUG  -I'C:/Users/Nano/Documents/R/win-library/4.0/Rcpp/include' -I'C:/Users/Nano/Documents/R/win-library/4.0/RcppArmadillo/include'        -O2 -Wall  -mfpmath=sse -msse2 -mstackrealign -c RcppExports.cpp -o RcppExports.o
"C:/rtools40/mingw64/bin/"g++  -std=gnu++11 -I"C:/PROGRA~1/R/R-40~1.3/include" -DNDEBUG  -I'C:/Users/Nano/Documents/R/win-library/4.0/Rcpp/include' -I'C:/Users/Nano/Documents/R/win-library/4.0/RcppArmadillo/include'        -O2 -Wall  -mfpmath=sse -msse2 -mstackrealign -c fast_wilcox.cpp -o fast_wilcox.o
fast_wilcox.cpp: In function 'std::__cxx11::list<float> cpp_in_place_rank_mean(arma::vec&, int, int)':
fast_wilcox.cpp:116:34: warning: comparison of integer expressions of different signedness: 'size_t' {aka 'long long unsigned int'} and 'int' [-Wsign-compare]
     for (size_t i = idx_begin; i <= idx_end; i++) {
                                ~~^~~~~~~~~~
C:/rtools40/mingw64/bin/g++ -shared -s -static-libgcc -o presto.dll tmp.def RcppExports.o fast_wilcox.o -LC:/PROGRA~1/R/R-40~1.3/bin/x64 -lR
installing to C:/Users/Nano/Documents/R/win-library/4.0/00LOCK-presto/00new/presto/libs/x64
** R
** data
** byte-compile and prepare package for lazy loading
** help
*** installing help indices
  converting help for package 'presto'
    finding HTML links ... 好了
    exprs                                   html  
    nnzeroGroups                            html  
    object_sce                              html  
    object_seurat                           html  
    pipe                                    html  
    presto                                  html  
    rank_matrix                             html  
    sumGroups                               html  
    top_markers                             html  
    wilcoxauc                               html  
    y                                       html  
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (presto)
> #install_github('immunogenomics/presto')
> library(presto)
载入需要的程辑包:Rcpp
载入需要的程辑包:data.table
data.table 1.13.6 using 2 threads (see ?getDTthreads).  Latest news: r-datatable.com
**********
用中文运行data.table。软件包只提供英语支持。当在在线搜索帮助时,也要确保检查英语错误信息。这个可以通过查看软件包源文件中的po/R-zh_CN.po和po/zh_CN.po文件获得,这个文件可以并排找到母语和英语错误信息。
**********

载入程辑包:‘data.table’

The following objects are masked from ‘package:dplyr’:

    between, first, last

The following object is masked from ‘package:purrr’:

    transpose

> #Loading required package: Rcpp
> pbmc.genes <- wilcoxauc(pbmc, 'seurat_clusters')
> head(pbmc.genes)
     feature group     avgExpr         logFC statistic       auc         pval         padj    pct_in
1 AL627309.1     0 0.004801016 -0.0048337160   2113594 0.4966881 0.0451711892 0.0817186691 0.5443235
2 AL627309.3     0 0.000000000 -0.0004923881   2126401 0.4996978 0.3781096732 0.4754137751 0.0000000
3 AL669831.5     0 0.058225088 -0.0101451241   2081447 0.4891337 0.0182067030 0.0364774662 6.8429238
4     FAM87B     0 0.000000000 -0.0017590952   2121900 0.4986401 0.0612494406 0.1063124181 0.0000000
5  LINC00115     0 0.033568380 -0.0054911605   2090280 0.4912094 0.0148011270 0.0301102065 3.7325039
6     FAM41C     0 0.015927696 -0.0162813395   2077756 0.4882664 0.0001622764 0.0004571717 2.0217729
     pct_out
1 1.20882442
2 0.06044122
3 9.21728619
4 0.27198549
5 5.59081293
6 4.38198852
> # 我们拥有每个cluster的所有基因
> dplyr::count(pbmc.genes, group)
   group     n
1      0 18791
2      1 18791
3     10 18791
4     11 18791
5     12 18791
6      2 18791
7      3 18791
8      4 18791
9      5 18791
10     6 18791
11     7 18791
12     8 18791
13     9 18791
> #使用fgsea进行基因集富集
> library(msigdbr)
Warning message:
程辑包‘msigdbr’是用R版本4.0.4 来建造的 
> library(fgsea)
> library(dplyr)
> library(ggplot2)
> msigdbr_show_species()#我们看看都有神马物种的数据
 [1] "Bos taurus"               "Caenorhabditis elegans"   "Canis lupus familiaris"  
 [4] "Danio rerio"              "Drosophila melanogaster"  "Gallus gallus"           
 [7] "Homo sapiens"             "Mus musculus"             "Rattus norvegicus"       
[10] "Saccharomyces cerevisiae" "Sus scrofa"              
Warning message:
'msigdbr_show_species' is deprecated.
Use 'msigdbr_species' instead.
See help("Deprecated") 
> m_df<- msigdbr(species = "Homo sapiens", category = "C7")#我们使用C7免疫基因集
> head(m_df)
# A tibble: 6 x 17
  gs_cat gs_subcat gs_name entrez_gene gene_symbol human_entrez_ge~ human_gene_symb~ gs_id gs_pmid
  <chr>  <chr>     <chr>         <int> <chr>                  <int> <chr>            <chr> <chr>  
1 C7     ""        GOLDRA~          20 ABCA2                     20 ABCA2            M3044 164927~
2 C7     ""        GOLDRA~       10057 ABCC5                  10057 ABCC5            M3044 164927~
3 C7     ""        GOLDRA~       25864 ABHD14A                25864 ABHD14A          M3044 164927~
4 C7     ""        GOLDRA~          34 ACADM                     34 ACADM            M3044 164927~
5 C7     ""        GOLDRA~          54 ACP5                      54 ACP5             M3044 164927~
6 C7     ""        GOLDRA~       51205 ACP6                   51205 ACP6             M3044 164927~
# ... with 8 more variables: gs_geoid <chr>, gs_exact_source <chr>, gs_url <chr>,
#   gs_description <chr>, species_name <chr>, species_common_name <chr>, ortholog_sources <chr>,
#   num_ortholog_sources <dbl>
> fgsea_sets<- m_df %>% split(x = .$gene_symbol, f = .$gs_name)
> fgsea_sets$GSE11057_NAIVE_VS_MEMORY_CD4_TCELL_UP
  [1] "ABLIM1"       "ACER1"        "ADGRA3"       "ADGRL1"       "AEBP1"        "AGRN"        
  [7] "AIF1"         "ALG10B"       "AMN1"         "ANKRD36BP2"   "APBA2"        "APBB1"       
 [13] "ARMCX2"       "BACH2"        "BEND5"        "BNIP3L"       "BTBD3"        "CA6"         
 [19] "CADPS2"       "CAMK4"        "CD248"        "CD55"         "CENPV"        "CEP41"       
 [25] "CHI3L2"       "CHML"         "CHMP7"        "CIAPIN1"      "CLCN5"        "COL5A2"      
 [31] "CRLF3"        "CYHR1"        "DDR1"         "DNHD1"        "DNTT"         "DSC1"        
 [37] "EDAR"         "EEA1"         "EFNA1"        "ENGASE"       "EXPH5"        "FCGRT"       
 [43] "GAL3ST4"      "GNAI1"        "GP5"          "GPR160"       "GPRASP1"      "GPRASP2"     
 [49] "GPRC5B"       "HEMGN"        "HIPK2"        "HSF2"         "IGF1R"        "IGIP"        
 [55] "ITGA6"        "KCNQ5"        "KCTD3"        "KLF3-AS1"     "KLHDC1"       "KLHL13"      
 [61] "KLHL24"       "KRT18"        "KRT2"         "KRT72"        "KRT73"        "LAGE3P1"     
 [67] "LEF1-AS1"     "LINC02175"    "LINC02604"    "LMLN"         "LRRN3"        "MALL"        
 [73] "MAML2"        "MANSC1"       "ME3"          "MEF2A"        "MEST"         "METAP1D"     
 [79] "MIR101-1"     "MIR600HG"     "MLXIP"        "MPP1"         "MPP7"         "MRPL45P2"    
 [85] "MYB"          "MZF1"         "NAA16"        "NBEA"         "NDC1"         "NDFIP1"      
 [91] "NET1"         "NPAS2"        "NPM3"         "NSUN5"        "NUCB2"        "NUDT12"      
 [97] "NUDT17"       "OBSCN-AS1"    "PADI4"        "PCED1B"       "PCSK5"        "PDCD4-AS1"   
[103] "PDE3B"        "PDE7A"        "PDE7B"        "PDE9A"        "PDK1"         "PECAM1"      
[109] "PHGDH"        "PIGL"         "PIK3CD"       "PIK3IP1"      "PITPNM2"      "PJVK"        
[115] "PKIG"         "PLA2G12A"     "PLAG1"        "PLLP"         "PRKCQ-AS1"    "PRRT1"       
[121] "PRXL2A"       "PTPRK"        "PXYLP1"       "RAPGEF6"      "REG4"         "RETREG1"     
[127] "RGS10"        "RHPN2"        "RIN3"         "RNF157-AS1"   "RNF175"       "RNF227"      
[133] "ROBO3"        "SATB1"        "SCAI"         "SCARB1"       "SCML1"        "SCML2"       
[139] "SERPINE2"     "SERTAD2"      "SERTM1"       "SETD1B"       "SFMBT2"       "SFXN2"       
[145] "SH3RF3"       "SIAH1"        "SLC11A2"      "SLC25A25-AS1" "SLC25A37"     "SLC29A2"     
[151] "SLC2A11"      "SMPD1"        "SNHG32"       "SNORD104"     "SNPH"         "SNRPN"       
[157] "SNX9"         "SORCS3"       "SPPL2B"       "SREBF1"       "STAP1"        "STK17A"      
[163] "TAF4B"        "TARBP1"       "TBC1D32"      "TGFBR2"       "TIMP2"        "TLE2"        
[169] "TMEM170B"     "TMEM198B"     "TMEM220"      "TMEM263"      "TMEM272"      "TMEM41B"     
[175] "TMIGD2"       "TOM1L2"       "TSPAN3"       "TTC28"        "TUG1"         "UBE2E2"      
[181] "USP44"        "VPS52"        "ZBTB18"       "ZC4H2"        "ZMYND8"       "ZNF182"      
[187] "ZNF229"       "ZNF496"       "ZNF506"       "ZNF516"       "ZNF546"       "ZNF563"      
[193] "ZNF662"       "ZNF780B"      "ZNRD1ASP"    
> # [161] "SMPD1"        "SNORD104"     "SNPH"         "SNRPN"
> # [165] "SNX9"         "SORCS3"       "SPPL2B"       "SREBF1"
> # [169] "STAP1"        "STK17A"       "TAF4B"        "TARBP1"
> # [173] "TGFBR2"       "TIMP2"        "TLE2"         "TMEM170B"
> # [177] "TMEM220"      "TMEM41B"      "TMEM48"       "TMIGD2"
> # [181] "TOM1L2"       "TSPAN3"       "TTC28"        "TUG1"
> # [185] "UBE2E2"       "USP44"        "VPS52"        "ZC4H2"
> # [189] "ZMYND8"       "ZNF182"       "ZNF229"       "ZNF238"
> # [193] "ZNF496"       "ZNF506"       "ZNF516"       "ZNF546"
> # [197] "ZNF563"       "ZNF662"       "ZNF780B"      "ZNRD1-AS1"
> GSE11057_NAIVE_VS_MEMORY_CD4_TCELL_UP#代表神马呢?
Error: object 'GSE11057_NAIVE_VS_MEMORY_CD4_TCELL_UP' not found
> # Naive CD4+ T cells
> pbmc.genes %>%
+   dplyr::filter(group == "0") %>%
+   arrange(desc(logFC), desc(auc)) %>%
+   head(n = 10)      #进行降序排序
   feature group  avgExpr     logFC statistic       auc          pval          padj   pct_in  pct_out
1     LDHB     0 2.236842 1.1323561   3729084 0.8763234  0.000000e+00  0.000000e+00 98.75583 74.94711
2     TRAC     0 2.001595 1.1146542   3292895 0.7738204 9.776911e-196 1.716990e-193 97.43390 45.21003
3     CD3E     0 1.875531 1.0540950   3318700 0.7798844 1.776334e-204 3.441143e-202 97.97823 44.90783
4     TCF7     0 1.587248 1.0267936   3595559 0.8449454  0.000000e+00  0.000000e+00 94.71229 43.94077
5      LTB     0 2.393454 1.0051991   3036392 0.7135429 5.121301e-114 4.130230e-112 98.75583 65.30674
6     CD3D     0 1.732485 0.9454245   3220600 0.7568311 3.387398e-174 5.092207e-172 96.81182 42.85283
7     CCR7     0 1.178436 0.9284103   3607895 0.8478444  0.000000e+00  0.000000e+00 85.38103 22.69568
8     IL7R     0 1.648002 0.8906921   3109680 0.7307653 2.634379e-148 3.113372e-146 88.88025 35.75098
9    SARAF     0 2.226737 0.8493958   3722765 0.8748385  0.000000e+00  0.000000e+00 99.14463 89.36235
10 TRABD2A     0 1.041894 0.8438752   3554334 0.8352577  0.000000e+00  0.000000e+00 80.09331 19.49229
> # 仅选择fgsea的feature和auc列
> cluster0.genes<- pbmc.genes %>%
+   dplyr::filter(group == "0") %>%
+   arrange(desc(auc)) %>%
+   dplyr::select(feature, auc)
> ranks<- deframe(cluster0.genes)
> head(ranks)
    RPL30     RPS3A     RPS13    RPL35A     RPL32     RPL34 
0.9376551 0.9358956 0.9250745 0.9196189 0.9185743 0.9132980 
> fgseaRes<- fgsea(fgsea_sets, stats = ranks, nperm = 1000)
Warning messages:
1: In fgsea(fgsea_sets, stats = ranks, nperm = 1000) :
  You are trying to run fgseaSimple. It is recommended to use fgseaMultilevel. To run fgseaMultilevel, you need to remove the nperm argument in the fgsea function call.
2: In preparePathwaysAndStats(pathways, stats, minSize, maxSize, gseaParam,  :
  There are ties in the preranked stats (20.92% of the list).
The order of those tied genes will be arbitrary, which may produce unexpected results.
3: In preparePathwaysAndStats(pathways, stats, minSize, maxSize, gseaParam,  :
  All values in the stats vector are greater than zero and scoreType is "std", maybe you should switch to scoreType = "pos".
> fgseaResTidy <- fgseaRes %>%
+   as_tibble() %>%
+   arrange(desc(NES))
> fgseaResTidy %>%
+   dplyr::select(-leadingEdge, -ES, -nMoreExtreme) %>%
+   arrange(padj) %>%
+   head()
# A tibble: 6 x 5
  pathway                                         pval    padj   NES  size
  <chr>                                          <dbl>   <dbl> <dbl> <int>
1 GSE10325_CD4_TCELL_VS_MYELOID_UP             0.00122 0.00688  9.87   196
2 GSE10325_LUPUS_CD4_TCELL_VS_LUPUS_MYELOID_UP 0.00122 0.00688  9.81   193
3 GSE22886_NAIVE_TCELL_VS_MONOCYTE_UP          0.00122 0.00688  9.44   196
4 GSE22886_NAIVE_CD4_TCELL_VS_MONOCYTE_UP      0.00122 0.00688  9.30   195
5 GSE22886_NAIVE_TCELL_VS_DC_UP                0.00122 0.00688  8.90   195
6 GSE10325_LUPUS_CD4_TCELL_VS_LUPUS_BCELL_UP   0.00122 0.00688  8.29   196
> #应用标准化富集分数绘制barplot
> # 显示top20信号通路
> ggplot(fgseaResTidy %>% filter(padj < 0.008) %>% head(n= 20), aes(reorder(pathway, NES), NES)) +
+   geom_col(aes(fill= NES < 7.5)) +
+   coord_flip() +
+   labs(x="Pathway", y="Normalized Enrichment Score",
+        title="Hallmark pathways NES from GSEA") +
+   theme_minimal() ####以7.5进行绘图填色
> #GSEA style plot
> plotEnrichment(fgsea_sets[["GSE10325_CD4_TCELL_VS_MYELOID_UP"]],
+                ranks) + labs(title="GSE10325 CD4 TCELL VS MYELOID UP")
> #应用标准化富集分数绘制barplot
> # 显示top20信号通路
> p2 <- ggplot(fgseaResTidy %>% filter(padj < 0.008) %>% head(n= 20), aes(reorder(pathway, NES), NES)) +
+   geom_col(aes(fill= NES < 7.5)) +
+   coord_flip() +
+   labs(x="Pathway", y="Normalized Enrichment Score",
+        title="Hallmark pathways NES from GSEA") +
+   theme_minimal() ####以7.5进行绘图填色
> p2
> ggsave("top20.pdf", plot=p2, width=8, height=6)
> ggsave("top20.png", plot=p2, width=8, height=6)
> #GSEA style plot
> p3 <- plotEnrichment(fgsea_sets[["GSE10325_CD4_TCELL_VS_MYELOID_UP"]],
+                ranks) + labs(title="GSE10325 CD4 TCELL VS MYELOID UP")
> p3
> ggsave("plotEnrichment.pdf", plot=p3, width=8, height=6)
> ggsave("plotEnrichment.png", plot=p3, width=8, height=6)
> head(ranks)
    RPL30     RPS3A     RPS13    RPL35A     RPL32     RPL34 
0.9376551 0.9358956 0.9250745 0.9196189 0.9185743 0.9132980 
> ranks<- deframe(cluster0.genes)
> head(ranks)
    RPL30     RPS3A     RPS13    RPL35A     RPL32     RPL34 
0.9376551 0.9358956 0.9250745 0.9196189 0.9185743 0.9132980
上一篇下一篇

猜你喜欢

热点阅读