《R数据科学》学习笔记|Note9:使用stringr处理字符串
使用stringr处理字符串
本周内容较多且杂,故分成上下两篇。正则表达式是从左到右来匹配一个字符串的。“Regular Expression”这个词太长了,我们通常使用它的缩写
“regex”
或者“regexp”
。 正则表达式可以被用来替换字符串中的文本、验证表单、基于模式匹配从一个字符串中提取字符串等等。关于正则表达式,GitHub
上有个很好的项目,如果大家有兴趣的话,可以点赞、在看,我这章之后更新项目笔记。
[TOC]
9.1 简介
本章将介绍 R 中的字符串处理。包括字符串的基本工作原理,以及如何手工创建字符串,但本章的重点是正则表达式(regular expression,regexp)。正则表达式的用处非常大,字符串通常包含的是非结构化或半结构化数据,正则表达式可以用简练的语言来描述字符串中的模式。
9.2 字符串基础
可以使用单引号或双引号来创建字符串。与其他语言不同,单引号和双引号在 R 中没有区别。我们推荐使用 ",除非你想要创建包含多个 " 的一个字符串:
string1 <- "This is a string"
string2 <- 'To put a "quote" inside a string, use single quotes'
如果忘记了结尾的引号,你会看到一个 +
,这是一个续行符:
> "This is a string without a closing quote
+
如果遇到了这种情况,可以按 Esc
键,然后重新输入。
如果想要在字符串中包含一个单引号或双引号,可以使用 \
对其进行“转义”:
double_quote <- "\"" # or '"'
single_quote <- '\'' # or "'"
这意味着,如果想要在字符串中包含一个反斜杠,就需要使用两个反斜杠:\\
。
字符串的打印形式与其本身的内容不是相同的,因为打印形式中会显示出转义字 符。如果想要查看字符串的初始内容,可以使用 writelines()
函数:
x <- c("\"", "\\")
x
> [1] "\"" "\\"
writeLines(x)
> "
> \
还有其他几种特殊字符。最常用的是换行符 \n
和制表符 \t
,你可以使用 ?'"'
或 ?"'"
调 出帮助文件来查看完整的特殊字符列表。
多个字符串通常保存在一个字符向量中,使用 c()
函数来创建字符向量:
c("one", "two", "three")
> [1] "one" "two" "three"
9.2.1 字符串长度
stringr
中的函数比R基础包中的字符串处理函数名称更直观,并且都是以 str_
开头的。例如,str_length()
函数可以返回字符串中的字符数量:
str_length(c("a", "R for data science", NA))
> [1] 1 18 NA
9.2.2 字符串组合
要想组合两个或更多字符串,可以使用 str_c()
函数:
str_c("x", "y")
> [1] "xy"
str_c("x", "y", "z")
> [1] "xyz"
可以使用 sep
参数来控制字符串间的分隔方式:
str_c("x", "y", sep = ", ")
> [1] "x, y"
和多数 R 函数一样,缺失值是可传染的。如果想要将它们输出为 "NA",可以使用 str_ replace_na()
:
x <- c("abc", NA)
str_c("|-", x, "-|")
> [1] "|-abc-|" NA
str_c("|-", str_replace_na(x), "-|")
> [1] "|-abc-|" "|-NA-|"
如以上代码所示,str_c()
函数是向量化的,它可以自动循环短向量,使得其与最长的向量具有相同的长度:
str_c("prefix-", c("a", "b", "c"), "-suffix")
> [1] "prefix-a-suffix" "prefix-b-suffix" "prefix-c-suffix"
长度为 0 的对象会被无声无息地丢弃。这与 if 结合起来特别有用:
name <- "Hadley"
time_of_day <- "morning"
birthday <- FALSE
str_c(
"Good ", time_of_day, " ", name,
if (birthday) " and HAPPY BIRTHDAY", # birthday 为True时,才会打印后面的语句
"."
)
> [1] "Good morning Hadley."
要想将字符向量合并为字符串,可以使用 collapse()
函数:
str_c(c("x", "y", "z"), collapse = ", ")
> [1] "x, y, z"
9.2.3 字符串取子集
可以使用 str_sub()
函数来提取字符串的一部分。除了字符串参数外,str_sub()
函数中还 有 start
和 end
参数,它们给出了子串的位置(包括 start
和 end
在内):
x <- c("Apple", "Banana", "Pear")
str_sub(x, 1, 3) # 开始、结束的位置参数
> [1] "App" "Ban" "Pea"
# 负数表示从后往前数
str_sub(x, -3, -1)
> [1] "ple" "ana" "ear"
注意,即使字符串过短,str_sub()
函数也不会出错,它将返回尽可能多的字符:
str_sub("a", 1, 5)
> [1] "a"
还可以使用 str_sub()
函数的赋值形式来修改字符串:
str_sub(x, 1, 1) <- str_to_lower(str_sub(x, 1, 1)) #函数将文本转换为小写
x
> [1] "apple" "banana" "pear"
9.3 使用正则表达式进行模式匹配
我们通过 str_view()
和 str_view_all()
函数来学习正则表达式。这两个函数接受一个字符向量和一个正则表达式,并显示出它们是如何匹配的。
9.3.1 基础匹配
最简单的模式是精确匹配字符串 :
x <- c("apple", "banana", "pear")
str_view(x, "an")
10
另一个更复杂一些的模式是使用 .
,它可以匹配任意字符(除了换行符):
str_view(x, ".a.")
11
但是,如果 .
可以匹配任意字符,那么如何匹配字符 .
呢?你需要使用一个“转义”符号来告诉正则表达式实际上就是要匹配 .
这个字符,而不是使用 .
来匹配其他字符。和字符串一样,正则表达式也使用反斜杠来去除某些字符的特殊含义。因此,如果要匹配 .
,那么你需要的正则表达式就是 \.
。遗憾的是,这样做会带来一个问题。因为我们使用字符串来表示正则表达 式,而且 \
在字符串中也用作转义字符,所以正则表达式 \.
的字符串形式应是 \\.
:
# 要想建立正则表示式,我们需要使用\\
dot <- "\\."
# 实际上表达式本身只包含一个\:
writeLines(dot)
#> \.
# 这个表达式告诉R搜索一个.
str_view(c("abc", "a.c", "bef"), "a\\.c")
12
如果 \
在正则表达式中用作转义字符,那么如何匹配 \
这个字符呢?我们还是需要去除其特殊意义,建立形式为 \\
的正则表达式。要想建立这样的正则表达式,我们需要使用一个字符串,其中还需要对 \
进行转义。这意味着要想匹配字符 \
,我们需要输入 "\\\\
"—— 你需要 4 个反斜杠来匹配 1 个反斜杠!
x <- "a\\b"
writeLines(x)
> a\b
str_view(x, "\\\\")
13
9.3.2 锚点
默认情况下,正则表达式会匹配字符串的任意部分。有时我们需要在正则表达式中设置锚点,以便 R 从字符串的开头或末尾进行匹配。我们可以设置两种锚点:
-
^
从字符串开头进行匹配。 -
$
从字符串末尾进行匹配。
x <- c("apple", "banana", "pear")
str_view(x, "^a")
str_view(x, "a$")
14
[图片上传失败...(image-8a207a-1614859299444)]
始于权力(^
),终于金钱($
)
如果想要强制正则表达式匹配一个完整字符串,那么可以同时设置 ^
和 $
这两个锚点:
x <- c("apple pie", "apple", "apple cake")
str_view(x, "apple")
16
str_view(x, "^apple$")
17
还可以使用 \b
来匹配单词间的边界。例如,为了避免匹配到 summarize
、summary
、rowsum
等,我们会使用 \bsum\b
进行搜索。
9.3.3 字符类与字符选项
很多特殊模式可以匹配多个字符。我们已经介绍过 .
,它可以匹配除换行符外的任意字符。 还有其他 4 种常用的字符类。
-
\d
可以匹配任意数字。 -
\s
可以匹配任意空白字符(如空格、制表符和换行符)。 -
[abc]
可以匹配 a、b 或 c -
[^abc]
可以匹配除 a、b、c 外的任意字符。
牢记,要想创建包含 \d
或 \s
的正则表达式,你需要在字符串中对 \
进行转义,因此需 要输入 "\\d
" 或 "\\s
"。
你还可以使用字符选项创建多个可选的模式。例如,abc|d..f
可以匹配 abc
或 deaf
。注 意,因为 |
的优先级很低,所以 abc|xyz
匹配的是 abc
或 xyz
,而不是 abcyz
或 abxyz
。与 数学表达式一样,如果优先级让人感到困惑,那么可以使用括号让其表达得更清晰一些:
str_view(c("grey", "gray"), "gr(e|a)y")
18
9.3.4 重复
正则表达式的另一项强大功能是,其可以控制一个模式能够匹配多少次。
-
?
:0 次或 1 次。 -
+
: 1 次或多次。 -
*
:0 次或多次。
x <- "1888 is the longest year in Roman numerals: MDCCCLXXXVIII"
str_view(x, "CC?")
22
str_view(x, "CC+")
20
str_view(x, 'C[LX]+')
21
注意,这些运算符的优先级非常高,因此使用 colou?r
既可以匹配 color
,也可以匹配 colour
。这意味着很多时候需要使用括号,比如 bana(na)+
。
还可以精确设置匹配的次数。
-
{n}
:匹配 n 次。 -
{n,}
:匹配 n 次或更多次。 -
{,m}
:最多匹配 m 次。 -
{n, m}
:匹配 n 到 m 次。
str_view(x, "C{2}")
str_view(x, "C{2}")
str_view(x, "C{2}")
#大家自行观察
默认的匹配方式是“贪婪的”:正则表达式会匹配尽量长的字符串。通过在正则表达式后面添加一个 ?
,你可以将匹配方式更改为“懒惰的”,即匹配尽量短的字符串。
str_view(x, 'C{2,3}?')
23
str_view(x, 'C[LX]+?')
24
9.3.5 分组与回溯引用
前面学习了括号可以用于消除复杂表达式中的歧义。括号还可以定义“分组”, 你可以通过回溯引用(如 \1
、\2
等)来引用这些分组。例如,以下的正则表达式可以找出名称中有重复的一对字母的所有水果:
fruit <- c("banana","coconut","cocumber","jujube","papaya","salal berry")
str_view(fruit, "(..)\\1", match = TRUE)
25