CV

线性滤波:方框滤波 均值滤波 高斯滤波

2017-07-19  本文已影响801人  谢小帅

OpenCV中常见的滤波器 - 百度文库

一、方框滤波(box Filter)

1. 原理

先给出内核,用内核各点的值与其对应的图像像素值相乘


可以看出通过滤波后,图片的边缘信息会丢失。

方框滤波(box Filter)被封装在一个名为boxFilter的函数中。

void boxFilter( InputArray src, OutputArray dst, int ddepth,
                Size ksize, Point anchor = Point(-1,-1),
                bool normalize = true,
                int borderType = BORDER_DEFAULT );

函数所用的核为:

下面实例中的 α = 1/25

如果我们要在可变的窗口中计算像素总和,可以使用integral()函数。
注:integral n. 积分

2. 实例

核心代码

boxFilter(src, dst, -1, Size(10, 10)); // 后面3个参数都用默认值
                                       // Point anchor = Point(-1,-1)
                                       // bool normalize = true
                                       // int borderType = BORDER_DEFAULT
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp"

using namespace cv;

int main() {

    Mat src = imread("../pics/pig.jpg");

    namedWindow("原图");
    imshow("原图", src);

    Mat dst;

    // 方框滤波
    boxFilter(src, dst, -1, Size(10, 10)); // 后面3个参数都用默认值

    namedWindow("方框滤波");
    imshow("方框滤波", dst);

    waitKey(0);
}

10 * 10 的核

Size(10, 10)

二、均值滤波

1. 原理

均值滤波,是最简单的一种滤波操作,输出图像的每一个像素是核窗口内输入图像对应像素的像素的平均值( 所有像素加权系数相等),其实说白了它就是归一化后的方框滤波,blur 函数内部中其实就是调用了一下 boxFilter。

均值滤波封装在一个名为blur的函数中。

void blur( InputArray src, OutputArray dst,
           Size ksize, Point anchor = Point(-1,-1),
           int borderType = BORDER_DEFAULT );

均值滤波的核:

2. 缺陷

均值滤波本身存在着固有的缺陷,即它不能很好地保护图像细节,在图像去噪的同时也破坏了图像的细节部分,从而使图像变得模糊,不能很好地去除噪声点。

3. 实例

核心代码

blur(src, dst, Size(10, 10));
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp"

using namespace cv;

int main() {

    Mat src = imread("../pics/pig.jpg");

    namedWindow("原图");
    imshow("原图", src);

    Mat dst;

    // 均值滤波
    blur(src, dst, Size(10, 10));

    namedWindow("均值滤波");
    imshow("均值滤波", dst);

    waitKey(0);
}

10 * 10 的核,与前面方框滤波的结果一样

Size(10, 10)

三、高斯滤波

1. 原理

从数学的角度来看,图像的高斯模糊过程就是图像与正态分布做卷积,由于正态分布也被称为高斯分布,因此这项技术被称为高斯模糊。

由于高斯函数的傅立叶变换是另外一个高斯函数,所以高斯模糊对于图像来说就是一个低通滤波操作。

具体操作是:用一个模板(或称卷积、掩模)扫描图像中的每一个像素,用模板确定的邻域内像素的 加权平均灰度值 去替代模板中心像素点的值。

高斯滤波器是一类 根据高斯函数的形状来选择权值的线性平滑滤波器。
高斯平滑滤波器对于 抑制服从正态分布的噪声非常有效。

高斯函数的一般形式,其中 a > 0, b, c 为实数

高斯函数一般形式 高斯函数趋势图

一维零均值 高斯函数为:

二维零均值 离散高斯函数

图像处理来说,常用二维零均值离散高斯函数作平滑滤波器。

高斯滤波封装在一个名为GaussianBlur的函数中。

void GaussianBlur( InputArray src, OutputArray dst, Size ksize,
                   double sigmaX, double sigmaY = 0,
                   int borderType = BORDER_DEFAULT );

3. 实例

核心代码

// 高斯滤波
// sigmaX 和 sigmaY 都是0,就由 ksize.width 和 ksize.height 计算出来
// Size w,h 必须为奇数
GaussianBlur(src, dst, Size(5, 5), 0, 0);
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp"

using namespace cv;

int main() {

    Mat src = imread("../pics/pig.jpg");

    namedWindow("原图");
    imshow("原图", src);

    Mat dst;

    // 高斯滤波
    // sigmaX 和 sigmaY 都是0,就由 ksize.width 和 ksize.height 计算出来
    // Size w,h 必须为奇数
    GaussianBlur(src, dst, Size(5, 5), 0, 0);

    namedWindow("高斯滤波");
    imshow("高斯滤波", dst);

    waitKey(0);
}

5 * 5 的核

Size(5, 5) // 必须为正奇数

四、总结

上一篇 下一篇

猜你喜欢

热点阅读