从源码出发 解析 Handler 机制
大家都知道 handler 主要是用在子线程中去更新UI线程,就如下面的代码一样:
public class MainActivity extends AppCompatActivity {
private TextView mTv;
private Handler mHandler = new Handler(){
@Override
public void handleMessage(@NonNull Message msg) {
mTv.setText((String)msg.obj);
super.handleMessage(msg);
}
};
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
mTv = findViewById(R.id.tv);
new Thread(new Runnable() {
@Override
public void run() {
Message message1 = Message.obtain();
mHandler.sendMessage(message1 );
Message message2 = Message.obtain();
mHandler.sendMessageDelayed(message2,2000);
Message message3 = Message.obtain();
mHandler.sendMessageDelayed(message3,500);
}
}).start();
}
}
如果直接在run方法中执行 setText()操作的话,肯定是报错的。会报:
android.view.ViewRootImpl$CalledFromWrongThreadException: Only the original thread that created a view hierarchy can touch its views.
这个错误。这句话的意思就是只能在原始线程中才能更新UI也就是主线程中,那么为什么通过Handler就行更新呢?
我们先看 Message.obtain() 的源码:
public static Message obtain() {
synchronized (sPoolSync) {
if (sPool != null) {
Message m = sPool;
sPool = m.next;
m.next = null;
m.flags = 0; // clear in-use flag
sPoolSize--;
return m;
}
}
return new Message();
}
这是一个消息复用机制,一开始的时候 sPool == null,所以会执行 new Message();这样 Message.obtain()就得到一个Message对象了。
下一步我们 sendMessage()
public final boolean sendMessage(@NonNull Message msg) {
return sendMessageDelayed(msg, 0);
}
再看sendMessageDelayed其中delayMillis==0
public final boolean sendMessageDelayed(@NonNull Message msg, long delayMillis) {
if (delayMillis < 0) {
delayMillis = 0;
}
return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis);
}
再看sendMessageAtTime
public boolean sendMessageAtTime(@NonNull Message msg, long uptimeMillis) {
MessageQueue queue = mQueue;
if (queue == null) {
RuntimeException e = new RuntimeException(
this + " sendMessageAtTime() called with no mQueue");
Log.w("Looper", e.getMessage(), e);
return false;
}
return enqueueMessage(queue, msg, uptimeMillis);
}
到这里我们就发现有一个
MessageQueue queue = mQueue;
我们先不考虑它是怎么来的,继续往下看 enqueueMessage(queue, msg, uptimeMillis)
private boolean enqueueMessage(@NonNull MessageQueue queue, @NonNull Message msg,
long uptimeMillis) {
msg.target = this;
msg.workSourceUid = ThreadLocalWorkSource.getUid();
if (mAsynchronous) {
msg.setAsynchronous(true);
}
return queue.enqueueMessage(msg, uptimeMillis);
}
这里有一个重要的信息:
msg.target = this;
this其实就是
Handler
对吧?
然后看 queue.enqueueMessage(msg, uptimeMillis)
boolean enqueueMessage(Message msg, long when) {
if (msg.target == null) {
throw new IllegalArgumentException("Message must have a target.");
}
if (msg.isInUse()) {
throw new IllegalStateException(msg + " This message is already in use.");
}
synchronized (this) {
if (mQuitting) {
IllegalStateException e = new IllegalStateException(
msg.target + " sending message to a Handler on a dead thread");
Log.w(TAG, e.getMessage(), e);
msg.recycle();
return false;
}
msg.markInUse();
msg.when = when;
Message p = mMessages;
boolean needWake;
if (p == null || when == 0 || when < p.when) {
// New head, wake up the event queue if blocked.
msg.next = p;
mMessages = msg;
needWake = mBlocked;
} else {
// Inserted within the middle of the queue. Usually we don't have to wake
// up the event queue unless there is a barrier at the head of the queue
// and the message is the earliest asynchronous message in the queue.
needWake = mBlocked && p.target == null && msg.isAsynchronous();
Message prev;
for (;;) {
prev = p;
p = p.next;
if (p == null || when < p.when) {
break;
}
if (needWake && p.isAsynchronous()) {
needWake = false;
}
}
msg.next = p; // invariant: p == prev.next
prev.next = msg;
}
// We can assume mPtr != 0 because mQuitting is false.
if (needWake) {
nativeWake(mPtr);
}
}
return true;
}
我们扣出主要的代码:
msg.when = when;
Message p = mMessages;
if (p == null || when == 0 || when < p.when) {
msg.next = p;
mMessages = msg;
} else {
Message prev;
for (;;) {
prev = p;
p = p.next;
if (p == null || when < p.when) {
break;
}
}
msg.next = p;
prev.next = msg;
}
当执行 mHandler.sendMessage(message1);我们看一下执行的过程,一开始的时候
mMassages = null
Message p = null
msg = message1
when = 0
message1.when = 0
条件 if (p == null || when == 0 || when < p.when) 成立
message1.next = null
mMessage = message1
最后是:
mMessage = message1
message1.next=null
结束
下一个执行 mHandler.sendMessageDelayed(message2,2000);
mMessage = message1
p = mMessage
p = message1
when = 2000
p.when = message1.when
p.when =0
条件 if (p == null || when == 0 || when < p.when) 不成立,则进入else语句的for死循环
prev = p
prev = message1
p = p.next
p = message1.next
p = null
所以 if (p == null || when < p.when) 条件成立,跳出死循环
msg.next = p
message2.next = p
message2.next = null
prev.next = message1.next
message1.next = message2
最后是:
mMessage = message1
message1.next = message2
message2.next = null
结束
下一个执行:mHandler.sendMessageDelayed(message3,500);
mMessage = message1
p = mMessage
p = message1
when = 500
p.when = message1.when
p.when = 0
when = 500
所以条件 if (p == null || when == 0 || when < p.when) 不成立 进入 else语句中的for死循环
prev = p
prev = message1
p = p.next
p = message1.next
p = message2
p.when = 2000
条件if (p == null || when < p.when)成立 跳出循环
msg.next = message3.next
message3.next= p
message3.next = message2
prev.next = message1.next
message1.next = message3
最后是:
mMessage = message1
message1.next = message3
message2.next = null
message3.next = message2
根据以上分析得到是Handler存储的消息队列是链式存储,采用这样的存储方式更加快速的插入消息和删除消息。
到这里为止,我们并没有发现有回调 handleMessage() 这个方法,不着急。至少到这里我们明白当执行了sendMessage()之后,message只是被存储到了队列中,然后就没有然后了。
在这里我们需要注意的是 不管你是sendMessage()还是sendMessageDelayed()其实都是调用 sendMessageAtTime()。
好了,现在消息过去了,怎么回调到handleMessage()这个方法呢?
到这里我们就要关注这个了
Looper
Looper是什么呢?它是一个消息处理器,看他的源码,不难会发现里面的消息循环,下面我们一点一点来。
当activity被创建的时候,ActivityThread中的main方法就会执行,我们看代码:
public static void main(String[] args) {
Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "ActivityThreadMain");
// Install selective syscall interception
AndroidOs.install();
// CloseGuard defaults to true and can be quite spammy. We
// disable it here, but selectively enable it later (via
// StrictMode) on debug builds, but using DropBox, not logs.
CloseGuard.setEnabled(false);
Environment.initForCurrentUser();
// Make sure TrustedCertificateStore looks in the right place for CA certificates
final File configDir = Environment.getUserConfigDirectory(UserHandle.myUserId());
TrustedCertificateStore.setDefaultUserDirectory(configDir);
Process.setArgV0("<pre-initialized>");
Looper.prepareMainLooper();
// Find the value for {@link #PROC_START_SEQ_IDENT} if provided on the command line.
// It will be in the format "seq=114"
long startSeq = 0;
if (args != null) {
for (int i = args.length - 1; i >= 0; --i) {
if (args[i] != null && args[i].startsWith(PROC_START_SEQ_IDENT)) {
startSeq = Long.parseLong(
args[i].substring(PROC_START_SEQ_IDENT.length()));
}
}
}
ActivityThread thread = new ActivityThread();
thread.attach(false, startSeq);
if (sMainThreadHandler == null) {
sMainThreadHandler = thread.getHandler();
}
if (false) {
Looper.myLooper().setMessageLogging(new
LogPrinter(Log.DEBUG, "ActivityThread"));
}
// End of event ActivityThreadMain.
Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
Looper.loop();
throw new RuntimeException("Main thread loop unexpectedly exited");
}
在这里我们只需要关注两行代码:
Looper.prepareMainLooper();
Looper.loop();
先看prepareMainLooper
public static void prepareMainLooper() {
prepare(false);
synchronized (Looper.class) {
if (sMainLooper != null) {
throw new IllegalStateException("The main Looper has already been prepared.");
}
sMainLooper = myLooper();
}
}
再看prepare
private static void prepare(boolean quitAllowed) {
if (sThreadLocal.get() != null) {
throw new RuntimeException("Only one Looper may be created per thread");
}
sThreadLocal.set(new Looper(quitAllowed));
}
其实这个就是我们在子线程调用的Loop.prepare() 。到这里我们知道 Looper.prepareMainLooper()和Loop.prepare()其实是一样的。
sThreadLocal 是什么呢?它是一个静态变量
static final ThreadLocal<Looper> sThreadLocal = new ThreadLocal<Looper>();
再看ThreadLocal 中的 set()方法
public void set(T value) {
Thread t = Thread.currentThread();
ThreadLocalMap map = getMap(t);
if (map != null)
map.set(this, value);
else
createMap(t, value);
}
//得到ThreadLocal
ThreadLocalMap getMap(Thread t) {
return t.threadLocals;
}
//创建ThreadLocal
void createMap(Thread t, T firstValue) {
t.threadLocals = new ThreadLocalMap(this, firstValue);
}
看到没有,这里是创建一个ThreadLocal,key是当前线程,value是Looper。
if (sThreadLocal.get() != null) {
throw new RuntimeException("Only one Looper may be created per thread");
}
这里就保证了一个线程只能有一个Looper,否则会报错。
当去创建一个Looper的时候就创建了一个消息队列,有且只有一个MessageQueue
private Looper(boolean quitAllowed) {
mQueue = new MessageQueue(quitAllowed);
mThread = Thread.currentThread();
}
下面我们接着看 Looper.loop()
public static void loop() {
final Looper me = myLooper();
if (me == null) {
throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
}
final MessageQueue queue = me.mQueue;
// Make sure the identity of this thread is that of the local process,
// and keep track of what that identity token actually is.
Binder.clearCallingIdentity();
final long ident = Binder.clearCallingIdentity();
// Allow overriding a threshold with a system prop. e.g.
// adb shell 'setprop log.looper.1000.main.slow 1 && stop && start'
final int thresholdOverride =
SystemProperties.getInt("log.looper."
+ Process.myUid() + "."
+ Thread.currentThread().getName()
+ ".slow", 0);
boolean slowDeliveryDetected = false;
for (;;) {
Message msg = queue.next(); // might block
if (msg == null) {
// No message indicates that the message queue is quitting.
return;
}
// This must be in a local variable, in case a UI event sets the logger
final Printer logging = me.mLogging;
if (logging != null) {
logging.println(">>>>> Dispatching to " + msg.target + " " +
msg.callback + ": " + msg.what);
}
// Make sure the observer won't change while processing a transaction.
final Observer observer = sObserver;
final long traceTag = me.mTraceTag;
long slowDispatchThresholdMs = me.mSlowDispatchThresholdMs;
long slowDeliveryThresholdMs = me.mSlowDeliveryThresholdMs;
if (thresholdOverride > 0) {
slowDispatchThresholdMs = thresholdOverride;
slowDeliveryThresholdMs = thresholdOverride;
}
final boolean logSlowDelivery = (slowDeliveryThresholdMs > 0) && (msg.when > 0);
final boolean logSlowDispatch = (slowDispatchThresholdMs > 0);
final boolean needStartTime = logSlowDelivery || logSlowDispatch;
final boolean needEndTime = logSlowDispatch;
if (traceTag != 0 && Trace.isTagEnabled(traceTag)) {
Trace.traceBegin(traceTag, msg.target.getTraceName(msg));
}
final long dispatchStart = needStartTime ? SystemClock.uptimeMillis() : 0;
final long dispatchEnd;
Object token = null;
if (observer != null) {
token = observer.messageDispatchStarting();
}
long origWorkSource = ThreadLocalWorkSource.setUid(msg.workSourceUid);
try {
msg.target.dispatchMessage(msg);
if (observer != null) {
observer.messageDispatched(token, msg);
}
dispatchEnd = needEndTime ? SystemClock.uptimeMillis() : 0;
} catch (Exception exception) {
if (observer != null) {
observer.dispatchingThrewException(token, msg, exception);
}
throw exception;
} finally {
ThreadLocalWorkSource.restore(origWorkSource);
if (traceTag != 0) {
Trace.traceEnd(traceTag);
}
}
if (logSlowDelivery) {
if (slowDeliveryDetected) {
if ((dispatchStart - msg.when) <= 10) {
Slog.w(TAG, "Drained");
slowDeliveryDetected = false;
}
} else {
if (showSlowLog(slowDeliveryThresholdMs, msg.when, dispatchStart, "delivery",
msg)) {
// Once we write a slow delivery log, suppress until the queue drains.
slowDeliveryDetected = true;
}
}
}
if (logSlowDispatch) {
showSlowLog(slowDispatchThresholdMs, dispatchStart, dispatchEnd, "dispatch", msg);
}
if (logging != null) {
logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);
}
// Make sure that during the course of dispatching the
// identity of the thread wasn't corrupted.
final long newIdent = Binder.clearCallingIdentity();
if (ident != newIdent) {
Log.wtf(TAG, "Thread identity changed from 0x"
+ Long.toHexString(ident) + " to 0x"
+ Long.toHexString(newIdent) + " while dispatching to "
+ msg.target.getClass().getName() + " "
+ msg.callback + " what=" + msg.what);
}
msg.recycleUnchecked();
}
}
这里我们抠出重点来讲就行
//得到Looper
final Looper me = myLooper();
if (me == null) {
throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
}
//得到looper中的消息队列
final MessageQueue queue = me.mQueue;
for (;;) {
Message msg = queue.next(); // might block
try {
msg.target.dispatchMessage(msg);
} catch (Exception exception) {
}
msg.recycleUnchecked();
}
我们只看三个代码一个:Message msg = queue.next();还有一个就是 msg.recycleUnchecked();另一个就是msg.target.dispatchMessage(msg);
下面看Message msg = queue.next();
Message next() {
// Return here if the message loop has already quit and been disposed.
// This can happen if the application tries to restart a looper after quit
// which is not supported.
final long ptr = mPtr;
if (ptr == 0) {
return null;
}
int pendingIdleHandlerCount = -1; // -1 only during first iteration
int nextPollTimeoutMillis = 0;
for (;;) {
if (nextPollTimeoutMillis != 0) {
Binder.flushPendingCommands();
}
nativePollOnce(ptr, nextPollTimeoutMillis);
synchronized (this) {
// Try to retrieve the next message. Return if found.
final long now = SystemClock.uptimeMillis();
Message prevMsg = null;
Message msg = mMessages;
if (msg != null && msg.target == null) {
// Stalled by a barrier. Find the next asynchronous message in the queue.
do {
prevMsg = msg;
msg = msg.next;
} while (msg != null && !msg.isAsynchronous());
}
if (msg != null) {
if (now < msg.when) {
// Next message is not ready. Set a timeout to wake up when it is ready.
nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
} else {
// Got a message.
mBlocked = false;
if (prevMsg != null) {
prevMsg.next = msg.next;
} else {
mMessages = msg.next;
}
msg.next = null;
if (DEBUG) Log.v(TAG, "Returning message: " + msg);
msg.markInUse();
return msg;
}
} else {
// No more messages.
nextPollTimeoutMillis = -1;
}
// Process the quit message now that all pending messages have been handled.
if (mQuitting) {
dispose();
return null;
}
// If first time idle, then get the number of idlers to run.
// Idle handles only run if the queue is empty or if the first message
// in the queue (possibly a barrier) is due to be handled in the future.
if (pendingIdleHandlerCount < 0
&& (mMessages == null || now < mMessages.when)) {
pendingIdleHandlerCount = mIdleHandlers.size();
}
if (pendingIdleHandlerCount <= 0) {
// No idle handlers to run. Loop and wait some more.
mBlocked = true;
continue;
}
if (mPendingIdleHandlers == null) {
mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)];
}
mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers);
}
// Run the idle handlers.
// We only ever reach this code block during the first iteration.
for (int i = 0; i < pendingIdleHandlerCount; i++) {
final IdleHandler idler = mPendingIdleHandlers[i];
mPendingIdleHandlers[i] = null; // release the reference to the handler
boolean keep = false;
try {
keep = idler.queueIdle();
} catch (Throwable t) {
Log.wtf(TAG, "IdleHandler threw exception", t);
}
if (!keep) {
synchronized (this) {
mIdleHandlers.remove(idler);
}
}
}
// Reset the idle handler count to 0 so we do not run them again.
pendingIdleHandlerCount = 0;
// While calling an idle handler, a new message could have been delivered
// so go back and look again for a pending message without waiting.
nextPollTimeoutMillis = 0;
}
}
这里就是不断的循环消息队列得到Message,并且判断message的target是不是空,也就是handler是不是空。
我们接着看 msg.target.dispatchMessage(msg);
public void dispatchMessage(@NonNull Message msg) {
if (msg.callback != null) {
handleCallback(msg);
} else {
if (mCallback != null) {
if (mCallback.handleMessage(msg)) {
return;
}
}
handleMessage(msg);
}
}
不容易呀,到这里终于看到handleMessage()了。
最后看 消息回收:msg.recycleUnchecked()
void recycleUnchecked() {
// Mark the message as in use while it remains in the recycled object pool.
// Clear out all other details.
flags = FLAG_IN_USE;
what = 0;
arg1 = 0;
arg2 = 0;
obj = null;
replyTo = null;
sendingUid = UID_NONE;
workSourceUid = UID_NONE;
when = 0;
target = null;
callback = null;
data = null;
synchronized (sPoolSync) {
if (sPoolSize < MAX_POOL_SIZE) {
next = sPool;
sPool = this;
sPoolSize++;
}
}
}
到这里为止,Handle的源码分析已经全部结束。
总结:当activity创建的时候,activityThread执行main方法,执行里面的Loop.prepareMainLooper(),创建Looper和消息队列,然后执行Loop.loop(),开始循环不断的去扫描消息队列。当创建一个Hanlder的时候,就调用mLooper = Looper.myLooper();mQueue = mLooper.mQueue;得到消息队列,执行sendMessage()就往这个队列中插入消息,loop()不断的循环就得到消息,回调到handleMessage()中。
完毕。。。
该吃午饭了,分析的不容易,希望看到同学们给个点赞。谢谢