索引面试题

2019-07-15  本文已影响0人  鸡毛飞上天吧

什么是索引?

索引是一种数据结构,能够帮助我们快速的检索数据库中的数据。
对于查询概率比较高,经常作为where条件的字段设置索引。

索引具体采用的哪种数据结构?

常见的MySQL主要有两种结构:Hash索引和B+ Tree索引,我们使用的是InnoDB引擎,默认的是B+树

B+ Tree和Hash索引比较起来有什么优缺点?

B+ Tree的叶子节点可以存哪些东西?

InnoDB的B+ Tree可能存储的是整行数据,也有可能是主键的值

B+ Tree的叶子节点存储整行数据和主键的值有什么区别?

聚簇索引和非聚簇索引在查询数据的时候有区别吗?

聚簇索引查询会更快
因为主键索引树的叶子节点直接就是我们要查询的整行数据了。而非主键索引的叶子节点是主键的值,一般情况下查到主键的值以后,还需要再通过主键的值再进行一次查询。

覆盖索引(covering index)

指一个查询语句的执行只用从索引中就能够取得,不必从数据表中读取。也可以称之为实现了索引覆盖。
当一条查询语句符合覆盖索引条件时,MySQL只需要通过索引就可以返回查询所需要的数据,这样避免了查到索引后再返回表操作,减少I/O提高效率。

如,表covering_index_sample中有一个普通索引 idx_key1_key2(key1,key2)。
当我们通过SQL语句:select key2 from covering_index_sample where key1 = 'keytest';的时候,就可以通过覆盖索引查询,无需回表。

左前缀匹配?

在创建多列索引时,我们根据业务需求,where子句中使用最频繁的一列放在最左边,因为MySQL索引查询会遵循最左前缀匹配的原则,即最左优先,在检索数据时从联合索引的最左边开始匹配。所以当我们创建一个联合索引的时候,如(key1,key2,key3),相当于创建了(key1)、(key1,key2)和(key1,key2,key3)三个索引,这就是最左匹配原则。

MySQL 5.6中,对索引做了哪些优化?

MySQL 5.6引入了索引下推优化,默认开启,使用SET optimizer_switch = 'index_condition_pushdown=off';可以将其关闭。官方文档中给的例子和解释如下:

people表中(zipcode,lastname,firstname)构成一个索引

SELECT * FROM people WHERE zipcode='95054' AND lastname LIKE '%etrunia%' AND address LIKE '%Main Street%';

如果没有使用索引下推技术,则MySQL会通过zipcode='95054'从存储引擎中查询对应的数据,返回到MySQL服务端,然后MySQL服务端基于lastname LIKE '%etrunia%'和address LIKE '%Main Street%'来判断数据是否符合条件。

如果使用了索引下推技术,则MYSQL首先会返回符合zipcode='95054'的索引,然后根据lastname LIKE '%etrunia%'和address LIKE '%Main Street%'来判断索引是否符合条件。如果符合条件,则根据该索引来定位对应的数据,如果不符合,则直接reject掉。有了索引下推优化,可以在有like条件查询的情况下,减少回表次数。

查询优化器

一条SQL语句的查询,可以有不同的执行方案,至于最终选择哪种方案,需要通过优化器进行选择,选择执行成本最低的方案。
在一条单表查询语句真正执行之前,MySQL的查询优化器会找出执行该语句所有可能使用的方案,对比之后找出成本最低的方案。

这个成本最低的方案就是所谓的执行计划。优化过程大致如下:
1、根据搜索条件,找出所有可能使用的索引
2、计算全表扫描的代价
3、计算使用不同索引执行查询的代价
4、对比各种执行方案的代价,找出成本最低的那一个

版权声明:文章内容总结于网络,如侵犯到原作者权益,请与我联系删除或授权事宜

上一篇 下一篇

猜你喜欢

热点阅读