数据简报&产品生活互联网科技产品经理

一个优秀的数据产品经理是如何练成的

2016-03-21  本文已影响544人  陈新涛

个人公众号ourstone,定期分享数据/产品心得,欢迎大家关注交流

序言

近些年来,随着大数据,Growth Hack,数据化运营等概念渐入人心,数据产品这个名字被提及的次数越来越多。那么究竟什么是数据产品?数据产品如何结合现在新兴的概念来解决商业问题?以及如何设计一个能够满足用户需求的数据产品?本文将和大家一起分享这些问题。

什么是数据产品

简单来讲,就是以数据为主要自动化产出的产品形态。这里强调自动化产出概念,是为了区分像 Gartner 之类的数据研究咨询公司,显然,他们的报告也可以理解为以数据为主要产出的产品,但并不具备自动化产出的特性。

明确了概念后,我们就可以对它拆分细化。从用户群体来区分,可以分为三类:1,企业内部使用的数据产品,如自建BI和推荐系统;2,针对所有企业推出的商业型数据产品,如 Google Analytics 和 GrowingIO ;3,任何用户均可使用的 Google Trends 和淘宝指数等等。在以上举的例子里,推荐系统可能会让人有些费解。其实,同用户画像,搜索排序类似的算法一样,它们本质上是根据用户数据和相应的数据模型,建立的一套评分标签体制。因此,在很多企业的划分里,这也是属于数据产品的范畴。

为什么需要数据产品

GrowingIO 创始人张溪梦先生说过一句话:一件事情只有被量化,才可能被优化。这与当先流行的 Growth Hack 核心理念不谋而合。增长是所有企业经营者的念念不忘,而那一声回响,就潜藏在数据产品中。

举个栗子,在Facebook中,直接汇报给 Mark Zuckerberg 的 Growth Team 就专门下辖了 Data & Analysis 和 Infrastructure 两个数据团队做数据的采集计算和展示。他们会对 Facebook 所有的数据进行监控,以及根据效果持续优化。他们对 Data Driven 重视到了什么程度?一个VP带领的30人团队做了一年的主页改版,在三个月内灰度上线过程中因数据表现不佳,直接回滚。对比之下,国内的人人网照抄那一次改版后,沿袭至今。可以这么说,Facebook 高速稳定的增长背后,数据产品功不可没。


Facebook Growth Team. From 覃超

如何设计数据产品

对于产品设计来讲,一些固定的步骤必不可少。厘清这些内容后,大到系统级的产品规划,小到功能级的产品设计,概念上都会清晰很多,我们将它抽象成了五个步骤:

  1. 面向什么用户和场景
  2. 解决什么问题/带来什么价值
  3. 问题的分析思路是什么
  4. 确认数据是否准确完备
  5. 选择什么样的产品形态

1. 面向什么用户和场景

任何产品设计均需要明确面向的用户和场景,因为不同用户在不同场景下打开你产品的姿势也大不相同。

要了解自己的用户,必须和他们保持长期有效的沟通。如 GrowingIO 的PM,每周都会有和销售和客户沟通的习惯,而且每位PM入职后,必须兼职一段时间的客服。只有这样,PM才能更好的了解用户以及他们的使用场景,设计出更好用的产品。

2. 解决什么问题/带来什么价值

这本质上是要明确产品满足了用户的什么需求。但凡需求,均有价值和优先级。

以一个利用GrowingIO的新功能做出来的漏斗图为例。客户最开始说的是我们要个漏斗分析 (Demand) 的功能,但核心需求 (Want) 是改善用户使用产品过程中的流失问题。那么不同来源不同层次的用户,在不同的使用时间,在不同的环节都需要进行监控和优化,最终设计出来的就是这个可以根据不同纬度不同环节进行对比分析的GrowingIO漏斗 (Need) 。


GrowingIO即将推出的漏斗功能

3. 问题分析思路是什么

以上两点其实都还是普通产品经理的范畴,到了这一部分才真正开始数据产品经理的专业课。明确了问题后,应该通过什么样的思路进行分析?需要明确以下原则:

这个环节是数据产品经理最核心的区别其他产品经理的部分,同时也要求甚高。既需要丰富的产品设计经验,也需要深刻的业务理解能力和数据分析能力。

4. 确认数据是否准确完备

分析思路需要相应的数据支撑,数据展示类的产品自不用说,即使是用户画像的算法类产品,也必须有足够的准确数据做支撑。在确认的过程要注意以下两点

再插个小广告,现在GrowingIO采取的无埋点采集数据的方案,便可以解决在数据准备上遇到的很多问题。数据所见即所得,完备性准确性自然迎刃而解。

5. 选择什么样的产品形态

以上四步最终确定完成之后,就可以选择相应的产品形态了。常见的数据产品形态有:着重于数据呈现的有邮件报表类,可视化报表类,预警预测类,决策分析类等;着重于算法类的用户标签,匹配规则等等。篇幅所限,这里挑可视化报表类跟大家分享下。

5.1 指标的设计

首先需要明确什么类型的产品适用什么样的指标,如电商最核心的是订单转化率,订单数,订单金额等,对于社交网站来讲则是日活跃用户数,互动数等。

5.2 指标的呈现

指标的呈现说白了,就是数据可视化。这对数据产品经理来说极为重要。它并不只是UI设计师的工作,因为他涉及到别人怎么去理解你的产品和使用你的数据。一方面需要阅读相关专业的书籍,另一方面,是要去观察足够多的产品,看他们是如何实现的。这里有一些通用的规则可以和大家分享

图片来自于网易云课堂

结语

文短话长,数据产品学问太深,这里的每一个小节都可以拆出来做成几篇大文章了,我们也只是窥得冰山一角。国外此类产品已经琳琅满目,遍布数据采集,清洗,聚合到展现的所有流程。而且每个环节都已经有相当成熟的产品。而国内近些年来也是风声渐起,将满空楼。数据产品之路仍然道阻且长,希望GrowingIO能和大家一起上下求索,Keep Growing!

上一篇 下一篇

猜你喜欢

热点阅读