Machine LearningScikit-Learn语言

Scikit-learn使用总结

2016-08-31  本文已影响72317人  Cer_ml

在机器学习和数据挖掘的应用中,scikit-learn是一个功能强大的python包。在数据量不是过大的情况下,可以解决大部分问题。学习使用scikit-learn的过程中,我自己也在补充着机器学习和数据挖掘的知识。这里根据自己学习sklearn的经验,我做一个总结的笔记。另外,我也想把这篇笔记一直更新下去。

1 scikit-learn基础介绍

1.1 估计器(Estimator)

估计器,很多时候可以直接理解成分类器,主要包含两个函数:

1.2 转换器(Transformer)

转换器用于数据预处理和数据转换,主要是三个方法:

1.3 流水线(Pipeline)

sklearn.pipeline

流水线的功能:

基本使用方法

流水线的输入为一连串的数据挖掘步骤,其中最后一步必须是估计器,前几步是转换器。输入的数据集经过转换器的处理后,输出的结果作为下一步的输入。最后,用位于流水线最后一步的估计器对数据进行分类。
每一步都用元组( ‘名称’,步骤)来表示。现在来创建流水线。

scaling_pipeline = Pipeline([
  ('scale', MinMaxScaler()),
  ('predict', KNeighborsClassifier())
])

1.4 预处理

主要在sklearn.preprcessing包下。

规范化:

编码:

1.5 特征

1.5.1 特征抽取

包:sklearn.feature_extraction
特征抽取是数据挖掘任务最为重要的一个环节,一般而言,它对最终结果的影响要高过数据挖掘算法本身。只有先把现实用特征表示出来,才能借助数据挖掘的力量找到问题的答案。特征选择的另一个优点在于:降低真实世界的复杂度,模型比现实更容易操纵。
一般最常使用的特征抽取技术都是高度针对具体领域的,对于特定的领域,如图像处理,在过去一段时间已经开发了各种特征抽取的技术,但这些技术在其他领域的应用却非常有限。

示例

data.png
CountVectorize只数出现个数
count.png hash.png

TfidfVectorizer:个数+归一化(不包括idf)


tfidf(without idf).png

1.5.2 特征选择

包:sklearn.feature_selection
特征选择的原因如下:
(1)降低复杂度
(2)降低噪音
(3)增加模型可读性

单个特征和某一类别之间相关性的计算方法有很多。最常用的有卡方检验(χ2)。其他方法还有互信息和信息熵。

1.6 降维

包:sklearn.decomposition

1.7 组合

包:**sklearn.ensemble **
组合技术即通过聚集多个分类器的预测来提高分类准确率。
常用的组合分类器方法:
(1)通过处理训练数据集。即通过某种抽样分布,对原始数据进行再抽样,得到多个训练集。常用的方法有装袋(bagging)和提升(boosting)。
(2)通过处理输入特征。即通过选择输入特征的子集形成每个训练集。适用于有大量冗余特征的数据集。随机森林(Random forest)就是一种处理输入特征的组合方法。
(3)通过处理类标号。适用于多分类的情况,将类标号随机划分成两个不相交的子集,再把问题变为二分类问题,重复构建多次模型,进行分类投票。

使用举例

AdaBoostClassifier(DecisionTreeClassifier(max_depth=1),
algorithm="SAMME",
n_estimators=200)

解释
装袋(bagging):根据均匀概率分布从数据集中重复抽样(有放回),每个自助样本集和原数据集一样大,每个自助样本集含有原数据集大约63%的数据。训练k个分类器,测试样本被指派到得票最高的类。
提升(boosting):通过给样本设置不同的权值,每轮迭代调整权值。不同的提升算法之间的差别,一般是(1)如何更新样本的权值,(2)如何组合每个分类器的预测。其中Adaboost中,样本权值是增加那些被错误分类的样本的权值,分类器C_i的重要性依赖于它的错误率。
Boosting主要关注降低偏差,因此Boosting能基于泛化性能相当弱的学习器构建出很强的集成;Bagging主要关注降低方差,因此它在不剪枝的决策树、神经网络等学习器上效用更为明显。偏差指的是算法的期望预测与真实预测之间的偏差程度,反应了模型本身的拟合能力;方差度量了同等大小的训练集的变动导致学习性能的变化,刻画了数据扰动所导致的影响。

1.8 模型评估(度量)

包:sklearn.metrics
sklearn.metrics包含评分方法、性能度量、成对度量和距离计算。
分类结果度量
参数大多是y_true和y_pred。

其中,F1是以每个类别为基础进行定义的,包括两个概念:准确率(precision)和召回率(recall)。准确率是指预测结果属于某一类的个体,实际属于该类的比例。召回率是被正确预测为某类的个体,与数据集中该类个体总数的比例。F1是准确率和召回率的调和平均数。

回归结果度量

多标签的度量

聚类的度量

1.9 交叉验证

包:sklearn.cross_validation

LeaveOneOut(n) 相当于 KFold(n, n_folds=n) 相当于LeavePOut(n, p=1)。
LeaveP和LeaveOne差别在于leave的个数,也就是测试集的尺寸。LeavePLabel和LeaveOneLabel差别在于leave的Label的种类的个数。
LeavePLabel这种设计是针对可能存在第三方的Label,比如我们的数据是一些季度的数据。那么很自然的一个想法就是把1,2,3个季度的数据当做训练集,第4个季度的数据当做测试集。这个时候只要输入每个样本对应的季度Label,就可以实现这样的功能。
以下是实验代码,尽量自己多实验去理解。

#coding=utf-8
import numpy as np
import sklearnfrom sklearn
import cross_validation
X = np.array([[1, 2], [3, 4], [5, 6], [7, 8],[9, 10]])
y = np.array([1, 2, 1, 2, 3])
def show_cross_val(method):    
  if method == "lolo":        
    labels = np.array(["summer", "winter", "summer", "winter", "spring"])        
    cv = cross_validation.LeaveOneLabelOut(labels)          
  elif method == 'lplo':        
    labels = np.array(["summer", "winter", "summer", "winter", "spring"])        
    cv = cross_validation.LeavePLabelOut(labels,p=2)    
  elif method == 'loo':        
    cv = cross_validation.LeaveOneOut(n=len(y))    
  elif method == 'lpo':        
    cv = cross_validation.LeavePOut(n=len(y),p=3)    
  for train_index, test_index in cv:        
    print("TRAIN:", train_index, "TEST:", test_index)        
    X_train, X_test = X[train_index], X[test_index]        
    y_train, y_test = y[train_index], y[test_index]        
    print "X_train: ",X_train        
    print "y_train: ", y_train        
    print "X_test: ",X_test        
    print "y_test: ",y_test
if __name__ == '__main__':    
  show_cross_val("lpo")

常用方法

1.10 网格搜索

包:sklearn.grid_search
网格搜索最佳参数

1.11 多分类、多标签分类

包:sklearn.multiclass

#coding=utf-8
from sklearn import metrics
from sklearn import cross_validation
from sklearn.svm import SVC
from sklearn.multiclass import OneVsRestClassifier
from sklearn.preprocessing import MultiLabelBinarizer
import numpy as np
from numpy import random
X=np.arange(15).reshape(5,3)
y=np.arange(5)
Y_1 = np.arange(5)
random.shuffle(Y_1)
Y_2 = np.arange(5)
random.shuffle(Y_2)
Y = np.c_[Y_1,Y_2]
def multiclassSVM():
    X_train, X_test, y_train, y_test = cross_validation.train_test_split(X, y, test_size=0.2,random_state=0)
    model = OneVsRestClassifier(SVC())
    model.fit(X_train, y_train)
    predicted = model.predict(X_test)
    print predicted
def multilabelSVM():
    Y_enc = MultiLabelBinarizer().fit_transform(Y)
    X_train, X_test, Y_train, Y_test = cross_validation.train_test_split(X, Y_enc, test_size=0.2, random_state=0)
    model = OneVsRestClassifier(SVC())
    model.fit(X_train, Y_train)
    predicted = model.predict(X_test)
    print predicted
if __name__ == '__main__':
    multiclassSVM()
    # multilabelSVM()

上面的代码测试了svm在OneVsRestClassifier的包装下,分别处理多分类和多标签的情况。特别注意,在多标签的情况下,输入必须是二值化的。所以需要MultiLabelBinarizer()先处理。

2 具体模型

2.1 朴素贝叶斯(Naive Bayes)

包:sklearn.cross_validation

朴素贝叶斯.png

朴素贝叶斯的特点是分类速度快,分类效果不一定是最好的。

所谓使用什么分布的朴素贝叶斯,就是假设P(x_i|y)是符合哪一种分布,比如可以假设其服从高斯分布,然后用最大似然法估计高斯分布的参数。

高斯分布.png 多项式分布.png 伯努利分布.png

3 scikit-learn扩展

3.0 概览

具体的扩展,通常要继承sklearn.base包下的类。

关于什么是Mixin(混合类),具体可以看这个知乎链接。简单地理解,就是带有实现方法的接口,可以将其看做是组合模式的一种实现。举个例子,比如说常用的TfidfTransformer,继承了BaseEstimator, TransformerMixin,因此它的基本功能就是单一职责的估计器和转换器的组合。

3.1 创建自己的转换器

在特征抽取的时候,经常会发现自己的一些数据预处理的方法,sklearn里可能没有实现,但若直接在数据上改,又容易将代码弄得混乱,难以重现实验。这个时候最好自己创建一个转换器,在后面将这个转换器放到pipeline里,统一管理。
例如《Python数据挖掘入门与实战》书中的例子,我们想接收一个numpy数组,根据其均值将其离散化,任何高于均值的特征值替换为1,小于或等于均值的替换为0。
代码实现:

from sklearn.base import TransformerMixin
from sklearn.utils import as_float_array

class MeanDiscrete(TransformerMixin):
  
  #计算出数据集的均值,用内部变量保存该值。  
  def fit(self, X, y=None):
        X = as_float_array(X)
        self.mean = np.mean(X, axis=0)
        #返回self,确保在转换器中能够进行链式调用(例如调用transformer.fit(X).transform(X))
        return self

    def transform(self, X):
        X = as_float_array(X)
        assert X.shape[1] == self.mean.shape[0]
        return X > self.mean
上一篇下一篇

猜你喜欢

热点阅读