数据结构和算法

树结构——二叉查找树

2017-07-13  本文已影响37人  zxcvbnmzsedr

定义

二叉查找树,也称二叉搜索树、有序二叉树(英语:ordered binary tree),排序二叉树(英语:sorted binary tree),是指一棵空树或者具有下列性质的二叉树:

  1. 若任意节点的左子树不空,则左子树上所有结点的值均小于它的根结点的值;
删除一个有左、右子树的节点

先弄出一个二叉树的叶子

    private static class BinaryNode<K,V> {
        K key; // 键
        V value; // 值
        BinaryNode<K,V> left; // 左子树
        BinaryNode<K,V> right; // 右子树

        BinaryNode(K key,V value) {
            this(key,value, null, null);
        }

        BinaryNode(K key,V value, BinaryNode<K,V> left, BinaryNode<K,V> right) {
            this.key = key;
            this.value = value;
            this.left = left;
            this.right = right;
        }
    }

插入算法

向一个二元搜寻树b中插入一个节点s的算法,过程为:

  1. 若b是空树,则将s所指结点作为根节点插入,否则:
    private BinaryNode insert(K key,V value,BinaryNode<K,V> node){
        // 如果根为空,则直接把传进来的建值作为树的根
        if(node == null){
            return new BinaryNode(key,value);
        }
        // 比较树根和将要成为叶子的值
        int result = compare(key,node.key);
        // 节点值比根小,将节点插入左子树,否则插入右子树
        if(result<0){
            node.left = insert(key,value,node.left);
        }else if(result > 0){
            node.right = insert(key,value,node.right);
        }
        return node;
    }
    final int compare(Object k1, Object k2) {
        return comparator==null ? ((Comparable<? super K>)k1).compareTo((K)k2)
                : comparator.compare((K)k1, (K)k2);
    }

查找算法

在二元搜寻树b中查找x的过程为:

  1. 若b是空树,则搜索失败,否则:
    private BinaryNode<K, V> getEntry(K key) {
        if(key == null){
            throw new NullPointerException();
        }
        BinarySearchTree.BinaryNode<K,V> p = rootTree;
        while (p != null){
            // 比较树根和和传入的key
            int cmp = compare(key,p.key);
            // 节点值比根小,则查找左子树,否则查找右子树
            if(cmp < 0)
                p = p.left;
            else if (cmp > 0)
                p = p.right;
            else
                return p;
        }
        return null;
    }

删除算法

  1. 若*p结点为叶子结点,即PL(左子树)和PR(右子树)均为空树。由于删去叶子结点不破坏整棵树的结构,则只需修改其双亲结点的指针即可。
    private BinaryNode<K, V> deleteEntry(K key, BinaryNode<K, V> node) {
        if (node == null) {
            return node;
        }
        int result = compare(key, node.key);
        if (result < 0) {
            // 存在左子树
            node.left = deleteEntry(key, node.left);
        } else if (result > 0) {
            // 存在右子树
            node.right = deleteEntry(key, node.right);
        } else if (node.left != null && node.right != null) {
             /**
             * 这边删除可以有两种方式,一种是找到右子树的最左节点,还有一种是找到左子树的最右节点
             * 然后把要删除的节点替换掉
             * node.key = findMax(node.left).key;
             * node.value = findMax(node.left).value;
             * node.left = deleteEntry(node.key, node.left);
             */
            // 找到右子树的左边最小节点把要删除的节点替换掉
            node.key = findMin(node.right).key;
            node.value = findMin(node.right).value;
            // 替换掉之后将节点删除
            node.right = deleteEntry(node.key, node.right);
        } else
            node = (node.left != null) ? node.left : node.right;
        return node;

    }

二叉查找树的弊端

最坏情况下,当先后插入的关键字有序时,构成的二叉查找树蜕变为单支树,这个时候复杂度会退化成O(n)


完整代码

/**
 * Created by tianzeng on 2017/5/13.
 * 二叉查找树
 * 1. 若任意节点的左子树不空,则左子树上所有结点的值均小于它的根结点的值;
 * 2. 若任意节点的右子树不空,则右子树上所有结点的值均大于它的根结点的值;
 * 3. 任意节点的左、右子树也分别为二叉查找树;
 * 4. 没有键值相等的节点
 */

  public class BinarySearchTree<K, V> {
    /**
     * 节点的数据结构
     */
    private static class BinaryNode<K, V> {
        K key;
        V value;
        BinaryNode<K, V> left;
        BinaryNode<K, V> right;

        BinaryNode(K key, V value) {
            this(key, value, null, null);
        }

        BinaryNode(K key, V value, BinaryNode<K, V> left, BinaryNode<K, V> right) {
            this.key = key;
            this.value = value;
            this.left = left;
            this.right = right;
        }
    }

    private BinaryNode rootTree; //
    private final Comparator<? super K> comparator;

    /**
     * 构造一个空的二叉查找树
     */
    public BinarySearchTree() {
        this.comparator = null;
        rootTree = null;
    }
    public BinarySearchTree(Comparator<? super K> comparator) {
        this.comparator = comparator;
    }
    /**
     * 清空二叉查找树
     */
    public void clear() {
        rootTree = null;
    }

    /**
     * 判断二叉树是否为空
     */
    public boolean isEmpty() {
        return rootTree == null;
    }

    final int compare(Object k1, Object k2) {
        return comparator == null ? ((Comparable<? super K>) k1).compareTo((K) k2)
                : comparator.compare((K) k1, (K) k2);
    }

    /**
     * 插入元素
     */
    public void put(K key, V value) {
        rootTree = insert(key, value, rootTree);
    }

    /**
     * 插入元素
     */
    private BinaryNode insert(K key, V value, BinaryNode<K, V> node) {
        // 如果根为空
        if (node == null) {
            return new BinaryNode(key, value);
        }
        int result = compare(key, node.key);
        // 节点值比根小,左子树
        if (result < 0) {
            node.left = insert(key, value, node.left);
        } else if (result > 0) {
            node.right = insert(key, value, node.right);
        }
        return node;
    }

    /**
     * 查找元素
     */
    public V get(K key) {
        BinarySearchTree.BinaryNode<K, V> p = getEntry(key);
        return (p == null ? null : p.value);
    }

    private BinaryNode<K, V> getEntry(K key) {
        if (key == null) {
            throw new NullPointerException();
        }
        BinarySearchTree.BinaryNode<K, V> p = rootTree;
        while (p != null) {
            int cmp = compare(key, p.key);
            if (cmp < 0)
                p = p.left;
            else if (cmp > 0)
                p = p.right;
            else
                return p;
        }
        return null;
    }

    public void remove(K key) {
        rootTree = deleteEntry(key, rootTree);
    }

    /**
     * 寻找该节点的最小节点
     */
    BinaryNode<K,V> findMin(BinaryNode<K, V> node){
        if(node == null){
            return null;
        }else if(node.left == null){
            return node;
        }
        return findMin(node.left);
    }
    BinaryNode<K,V> findMax(BinaryNode<K, V> node){
        if(node == null){
            return null;
        }else if(node.right == null){
            return node;
        }
        return findMax(node.right);
    }
    private BinaryNode<K, V> deleteEntry(K key, BinaryNode<K, V> node) {
        if (node == null) {
            return node;
        }
        int result = compare(key, node.key);
        if (result < 0) {
            // 存在左子树
            node.left = deleteEntry(key, node.left);
        } else if (result > 0) {
            // 存在右子树
            node.right = deleteEntry(key, node.right);
        } else if (node.left != null && node.right != null) {
            /**
             * node.key = findMax(node.left).key;
             * node.value = findMax(node.left).value;
             * node.left = deleteEntry(node.key, node.left);
             */
            // 找到右子树的左边最小节点把要删除的节点替换掉
            node.key = findMin(node.right).key;
            node.value = findMin(node.right).value;
            // 替换掉之后将节点删除
            node.right = deleteEntry(node.key, node.right);
        } else
            node = (node.left != null) ? node.left : node.right;
        return node;

    }
    public void print(){
        print(rootTree);
    }

    public void print(BinaryNode root) {
        if (root == null) {
            return;
        }

        List<BinaryNode> list = new LinkedList<>();
        BinaryNode node;
        // 当前层的结点个数
        int current = 1;
        // 记录下一层的结点个数
        int next = 0;
        list.add(root);

        while (list.size() > 0) {
            node = list.remove(0);
            current--;
            System.out.printf("%-3s", node.value);

            if (node.left != null) {
                list.add(node.left);
                next++;
            }
            if (node.right != null) {
                list.add(node.right);
                next++;
            }

            if (current ==0) {
                System.out.println();
                current = next;
                next = 0;
            }
        }
    }
}

测试:

参考资料

维基百科——二叉搜索树
二叉树(BST树)内结点的删除
6天通吃树结构—— 第一天 二叉查找树

上一篇 下一篇

猜你喜欢

热点阅读