LeetCode 212-Word Search II

2016-05-21  本文已影响382人  胡哈哈哈

Given a 2D board and a list of words from the dictionary, find all words in the board.

Each word must be constructed from letters of sequentially adjacent cell, where "adjacent" cells are those horizontally or vertically neighboring. The same letter cell may not be used more than once in a word.

For example,
Given words = ["oath","pea","eat","rain"] and board =

[
  ['o','a','a','n'],
  ['e','t','a','e'],
  ['i','h','k','r'],
  ['i','f','l','v']
]

Return ["eat","oath"].

Note:

You may assume that all inputs are consist of lowercase letters a-z.

分析

参照Word Search,我先尝试使用类似的方法。由于查询单词需要从board的某个坐标点(i, j)出发,如果查询每个单词都得遍历一遍board显然效率太低。因此我使用一个哈希表纪录了board中不同字母起点的坐标,比如例子中‘a’的起点有[[0,1],[0,2],[1,2]]。由此,在查询过程中可以直接从哈希表中取起点,无需遍历board。

但最后这个算法Time Limit Exceeded,原因如下:对于相同前缀的words中的若干个单词,我们机械地查找了多次,实际上只需要查询一次即可。如["aaaaaa", "aaaaab", "aaaaac"],它们都具有相同的前缀“aaaaa”。改进方法后面再分析,先给出这个TLE的算法:

TLE代码

class Solution {
public:
    vector<string> findWords(vector<vector<char>>& board, vector<string>& words) {
        vector<string> answer;
        int row = board.size();
        int col = board[0].size();
        vector<vector<pair<int, int>>> store(26);

        for (int i = 0; i != row; ++i) {
            for (int j = 0; j != col; ++j) {
                int index = find(board[i][j]);
                store[index].push_back(make_pair(i, j));
            }
        }

        for (string word : words) {
            if (!word.size()) {
                answer.push_back("");
                break;
            }
            int index = find(word[0]);
            for (auto pair : store[index]) {
                if (search(board, pair.first, pair.second, word, 0)) {
                    answer.push_back(word);
                }
            }
        }
        return answer;
    }

    int find(char letter) { return static_cast<int> (letter - 'a'); }

    bool search(vector<vector<char>>& board, int i, int j, string word, int k) {
        if (++k == word.size()) return true;
        board[i][j] = 'X';
        int dx[] = {1, 0, -1, 0};
        int dy[] = {0, 1, 0, -1};
        for (int s = 0; s != 4; ++s) {
            int new_i = i + dy[s], new_j = j + dx[s];
            if (inBoard(board, new_i, new_j) 
                && board[new_i][new_j] == word[k] 
                && search(board, new_i, new_j, word, k)) {
                board[i][j] = word[--k];
                return true;
            }
        }
        board[i][j] = word[--k];
        return false;
    }

    bool inBoard(vector<vector<char>>& board, int i, int j) {
        int row = board.size(), col = board[0].size();
        return i < row && i >= 0 && j < col && j >= 0;
    }
};

正如上面分析的那样,这种基于哈希表的算法,每次只查询一个单词,显然这会导致重复工作。所以正确的做法是构造一个字典树(Trie Tree),将字典树作为一个待查询的字符串集,在board中进行查找。

毋庸置疑,基于字典树的算法每次都查询整个字符串集,避免了相同前缀多次搜索的问题。字典树的实现请见Leetcode208-Implement Trie (Prefix Tree)

这里我在Leetcode208的基础上做了一些变化:

AC代码

int find(char letter) { return static_cast<int> (letter - 'a'); }

class TrieNode {
public:
    string * wordLocation;
    TrieNode * letters[26];

    TrieNode() {
        wordLocation = NULL;
        for (int i = 0; i != 26; ++i) { letters[i] = NULL; }
    }
};

class WordsDictionary {
public:
    WordsDictionary(): root(new TrieNode()) {}

    void addWord(string& word) {
        TrieNode * curr = root;

        for (int i = 0; i != word.size(); ++i) {
            int index = find(word[i]);
            if (!curr->letters[index]) {
                curr->letters[index] = new TrieNode();
            }
            curr = curr->letters[index];
        }
        curr->wordLocation = &word;
    }

    TrieNode* root;
};

class Solution {
public:
    vector<string> findWords(vector<vector<char>>& board, vector<string>& words) {
        vector<string> answer;
        WordsDictionary wordsDict;
        unordered_set<string> check;
        int row = board.size(), col = board[0].size();

        for (string& word : words) {
            wordsDict.addWord(word);
        }

        for (int i = 0; i != row; ++i) {
            for (int j = 0; j != col; ++j) {
                findWordsInBoard(board, i, j, wordsDict.root, answer, check);
            }
        }

        return answer;
    }

    void findWordsInBoard(vector<vector<char>>& board, int i, int j, TrieNode * curr, vector<string>& answer, unordered_set<string>& check) {
        if (!inBoard(board, i, j) || board[i][j] == 'X') return;

        char currentLetter = board[i][j];
        int dx[] = {1, 0, -1, 0};
        int dy[] = {0, 1, 0, -1};
        int index = find(currentLetter);
        board[i][j] = 'X';

        if (curr->letters[index]) {
            string * location = curr->letters[index]->wordLocation;
            if (location && check.find(*location) == check.end()) {
                answer.push_back(*curr->letters[index]->wordLocation);
                check.insert(*location);
            }
            for (int k = 0; k != 4; ++k) {
                findWordsInBoard(board, i + dy[k], j + dx[k], curr->letters[index], answer, check);
            }
        }
        board[i][j] = currentLetter;
    }

    bool inBoard(vector<vector<char>>& board, int i, int j) {
        int row = board.size();
        int col = board[0].size();

        return i >= 0 && i < row && j >= 0 && j < col;
    }
};
上一篇 下一篇

猜你喜欢

热点阅读