商业数据分析第三课作业
2017-09-13 本文已影响19人
橙子LifeX
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
%config InlineBackend.figure_format = 'retina'
df = pd.read_csv('HRSalaries.csv')
df.head()
1、计算 HRSalaries 数据中评分Review_Score 的均值和中位数,并判断其偏度是左偏还是右偏?
score = df.Review_Score
score.mean()
6.455890899484876
score.median()
6.5
score.mean() < score.median()
左偏
2、 Review_Score 的IQR是多少?并绘制该数据的box图。
Q1 = score.quantile(0.25)
Q1
5.8
Q3 = score.quantile(0.75)
Q3
7.2
IQR = Q3 - Q1
IQR
1.4000000000000004
score.plot(kind='box')
plt.show()
png
3、Review_Score的标准差是多少?
score.std()
1.0304045880216559
4、在Review_Score中,求落在两个标准差内的数据占总数的百分比。
mean = score.mean()
std = score.std()
len(score[score.between(mean- 2 * std, mean + 2 * std)])/len(score)
0.9617950072645621
5、对于 DoIT 部门,计算其收入和评分的相关系数。
doit_salary = df[df.Department == 'DoIT'].Annual_Salary
doit_score = df[df.Department == 'DoIT'].Review_Score
cov = np.cov(doit_salary, doit_score)
cov
array([[ 1.68675014e+08, 8.22248389e+01],
[ 8.22248389e+01, 1.10434064e+00]])
np.corrcoef(doit_salary, doit_score)[0,1]
0.0060245710104947512
plt.scatter(doit_salary, doit_score)
plt.show()
png