自己实现一个一致性 Hash 算法
2018-03-31 本文已影响78人
莫那一鲁道
前言
在前文分布式理论(八)—— Consistent Hash(一致性哈希算法)中,我们讨论了一致性 hash 算法的原理,并说了,我们会自己写一个简单的算法。今天就来写一个。
普通 hash 的结果
先看看普通 hash 怎么做。
首先,需要缓存节点对象,缓存中的存储对象,还有一个缓存节点集合,用于保存有效的缓存节点。
- 实际存储对象,很简单的一个类,只需要获取他的 hash 值就好:
static class Obj {
String key;
Obj(String key) {
this.key = key;
}
@Override
public int hashCode() {
return key.hashCode();
}
@Override
public String toString() {
return "Obj{" +
"key='" + key + '\'' +
'}';
}
}
- 缓存节点对象,用于存储实际对象:
static class Node {
Map<Integer, Obj> node = new HashMap<>();
String name;
Node(String name) {
this.name = name;
}
public void putObj(Obj obj) {
node.put(obj.hashCode(), obj);
}
Obj getObj(Obj obj) {
return node.get(obj.hashCode());
}
@Override
public int hashCode() {
return name.hashCode();
}
}
也很简单,内部使用了一个 map 保存节点。
- 缓存节点集合,用于保存有效的缓存节点:
static class NodeArray {
Node[] nodes = new Node[1024];
int size = 0;
public void addNode(Node node) {
nodes[size++] = node;
}
Obj get(Obj obj) {
int index = obj.hashCode() % size;
return nodes[index].getObj(obj);
}
void put(Obj obj) {
int index = obj.hashCode() % size;
nodes[index].putObj(obj);
}
}
内部一个数组,取数据时,通过取余机器数量获取缓存节点,再从节点中取出数据。
- 测试:当增减节点时,还能不能找到原有数据:
/**
* 验证普通 hash 对于增减节点,原有会不会出现移动。
*/
public static void main(String[] args) {
NodeArray nodeArray = new NodeArray();
Node[] nodes = {
new Node("Node--> 1"),
new Node("Node--> 2"),
new Node("Node--> 3")
};
for (Node node : nodes) {
nodeArray.addNode(node);
}
Obj[] objs = {
new Obj("1"),
new Obj("2"),
new Obj("3"),
new Obj("4"),
new Obj("5")
};
for (Obj obj : objs) {
nodeArray.put(obj);
}
validate(nodeArray, objs);
}
private static void validate(NodeArray nodeArray, Obj[] objs) {
for (Obj obj : objs) {
System.out.println(nodeArray.get(obj));
}
nodeArray.addNode(new Node("anything1"));
nodeArray.addNode(new Node("anything2"));
System.out.println("========== after =============");
for (Obj obj : objs) {
System.out.println(nodeArray.get(obj));
}
}
测试步骤如下:
- 向集合中添加 3 个节点。
- 向
集群
中添加 5 个对象,这 5 个对象会根据 hash 值散列到不同的节点中。 - 打印
未增减前
的数据。 - 打印
增加 2 个节点
后数据,看看还能不能访问到数据。
结果:
一个都访问不到了。这就是普通的取余的缺点,在增减机器的情况下,这种结果无法接收。
再看看一致性 hash 如何解决。
一致性 Hash 的结果
关键的地方来了。
缓存节点对象和实际保存对象不用更改,改的是什么?
改的是保存对象的方式和取出对象的方式,也就是不使用对机器进行取余的算法。
新的 NodeArray 对象如下:
static class NodeArray {
/** 按照 键 排序*/
TreeMap<Integer, Node> nodes = new TreeMap<>();
void addNode(Node node) {
nodes.put(node.hashCode(), node);
}
void put(Obj obj) {
int objHashcode = obj.hashCode();
Node node = nodes.get(objHashcode);
if (node != null) {
node.putObj(obj);
return;
}
// 找到比给定 key 大的集合
SortedMap<Integer, Node> tailMap = nodes.tailMap(objHashcode);
// 找到最小的节点
int nodeHashcode = tailMap.isEmpty() ? nodes.firstKey() : tailMap.firstKey();
nodes.get(nodeHashcode).putObj(obj);
}
Obj get(Obj obj) {
Node node = nodes.get(obj.hashCode());
if (node != null) {
return node.getObj(obj);
}
// 找到比给定 key 大的集合
SortedMap<Integer, Node> tailMap = nodes.tailMap(obj.hashCode());
// 找到最小的节点
int nodeHashcode = tailMap.isEmpty() ? nodes.firstKey() : tailMap.firstKey();
return nodes.get(nodeHashcode).getObj(obj);
}
}
该类和之前的类的不同之处在于:
- 内部没有使用数组,而是使用了有序 Map。
- put 方法中,对象如果没有落到缓存节点上,就找比他小的节点且离他最近的。这里我们使用了 TreeMap 的 tailMap 方法,具体 API 可以看文档。
- get 方法中,和 put 步骤相同,否则是取不到对象的。
具体寻找节点的方式如图:
image.png相同的测试用例,执行结果如下:
image.png找到了之前所有的节点。解决了普通 hash 的问题。
总结
代码比较简单,主要是通过 JDK 自带的 TreeMap 实现的寻找临近节点。当然,我们这里也只是测试了添加,关于修改还没有测试,但思路是一样的。这里只是做一个抛砖引玉。
同时,我们也没有实现虚拟节点,感兴趣的朋友可以尝试一下。
good luck!!!!