基于 RocksDB 的持久化队列

2020-01-14  本文已影响0人  李传亮

https://github.com/artiship/rocks-queue-java

RocksDB 是一个基于 write-ahead-log 和 log-structured-merge-tree 实现的嵌入式的 KV 数据库. 如果通过类比来理解,可以认为它是单机版的 HBase. 这篇文章介绍和讨论的是如何基于 RocksDB 实现一个持久化队列,这种持久化队列的适用场景有:

1.如何在一个 KV 数据库上实现队列?

  1. RocksQueuequeue_name_queue_name 两个列簇组成. queue_name 用来存储数据, _queue_name 存储队列的 headtail 指针.
  2. RocksStore 是一个创建队列的工厂且负责维护 <queue_name, RocksQueue> 的关系。

2.使用

2.1 创建一个队列

StoreOptions storeOptions = StoreOptions.builder().database("rocks_db").build();
                    
rocksStore = new RocksStore(storeOptions);
queue = rocksStore.createQueue(generateQueueName());

2.2 出、入队列(Enqueue,Dequeue)

byte[] something = "something".getBytes();
long id = queue.enqueue(something);

QueueItem dequeue = queue.dequeue();
assertArrayEquals(dequeue.getValue(), something);

2.3 获取、删除队头(Consume, RemoveHead)

你可通过 consume 获取队列头然后处理, 然后使用 removeHead 方便删除队头.

QueueItem head = queue.consume();
log.info("Processing queue head {}", head);

queue.removeHead()

3. JMX 监控指标

项目提供了一些 jmx 指标如下

RocksStore

Metric Name Description
DatabaseName RocksStore database name
RocksdbLocation RocksStore location
RocksDBDiskUsageInBytes The current size for RocksStore in bytes
NumberOfQueueCreated How many queues have been created in store
IsOpen Is RocksStore been open
IsClosed Is RocksStore been closed

RocksQueue

Metric Name Description
QueueName The queue name
QueueSize Queue size
AccumulateBytes The current size of the queue in bytes,enqueue will increase and dequeue decrease
HeadIndex The head of the queue
TailIndex The tail oft the queue
IsCreated Has the queue been created
IsClosed Has the queue been closed
SecondsSinceLastEnqueue Seconds since the last enqueue in ms
SecondsSinceLastConsume Seconds since the last consume in ms
SecondsSinceLastDequeue Seconds since the last dequeue in ms

Benchmark 测试

Benchmark Mode Cnt Score Error Units
RocksQueueBenchmark.consume avgt 50 12576.618 ± 17929.697 ns/op
RocksQueueBenchmark.dequeue avgt 50 2168917.940 ± 1063197.522 ns/op
RocksQueueBenchmark.enqueue avgt 50 1762257.820 ± 232716.449 ns/op
RocksQueueBenchmark.removeHead avgt 50 1558168.420 ± 276410.130 ns/op
上一篇 下一篇

猜你喜欢

热点阅读