SparkStreaming+Zookeeper+Kafka入门
准备工作:
开始工作
1. 启动zookeeper
打开终端,切换到 zookeeper HOME
目录, 进入conf文件夹,拷贝一份 zoo_sample.cfg
副本并重命名为 zoo.cfg
切换到上级的bin目录中,执行 ./zkServer.sh start
启动zookeeper,会有日志打印
Starting zookeeper ... STARTED
然后用 ./zkServer.sh status
查看状态,如果有下列信息输出,则说明启动成功
Mode: standalone
如果要停止zookeeper,则运行 ./zkServer stop
即可
2. 启动kafka
打开终端,切换到 kafka HOME
目录,运行 bin/kafka-server-start.sh config/server.properties
会有以下类似日志输出
[2014-11-12 17:38:13,395] INFO [ReplicaFetcherManager on broker 0] Removed fetcher for partitions [test,0] (kafka.server.ReplicaFetcherManager)
[2014-11-12 17:38:13,420] INFO [ReplicaFetcherManager on broker 0] Removed fetcher for partitions [test,0] (kafka.server.ReplicaFetcherManager)
3. 启动kafka生产者
重新打开一个终端,暂叫做 生产者终端,方便后面引用说明。切换到 kafka HOME
目录,运行 bin/kafka-console-producer.sh --broker-list localhost:9092 --topic test
创建一个叫 test
的主题。
4. 编写scala应用程序
package test
import java.util.Properties
import kafka.producer._
import org.apache.spark.streaming._
import org.apache.spark.streaming.StreamingContext._
import org.apache.spark.streaming.kafka._
import org.apache.spark.SparkConf
object KafkaWordCount {
def main(args: Array[String]) {
// if (args.length < 4) {
// System.err.println("Usage: KafkaWordCount <zkQuorum> <group> <topics> <numThreads>")
// System.exit(1)
// }
// StreamingExamples.setStreamingLogLevels()
//val Array(zkQuorum, group, topics, numThreads) = args
val zkQuorum = "localhost:2181"
val group = "1"
val topics = "test"
val numThreads = 2
val sparkConf = new SparkConf().setAppName("KafkaWordCount").setMaster("local[2]")
val ssc = new StreamingContext(sparkConf, Seconds(2))
ssc.checkpoint("checkpoint")
val topicpMap = topics.split(",").map((_,numThreads)).toMap
val lines = KafkaUtils.createStream(ssc, zkQuorum, group, topicpMap).map(_._2)
val words = lines.flatMap(_.split(" "))
val pairs = words.map(word => (word, 1))
val wordCounts = pairs.reduceByKey(_ + _)
//val wordCounts = words.map(x => (x, 1L))
// .reduceByKeyAndWindow(_ + _, _ - _, Minutes(10), Seconds(2), 2)
wordCounts.print()
ssc.start()
ssc.awaitTermination()
}
}
build.sbt
文件中添加依赖
libraryDependencies += "org.apache.spark" % "spark-streaming_2.10" % "1.1.0"
libraryDependencies += "org.apache.spark" % "spark-streaming-kafka_2.10" % "1.1.0"
启动scala程序,然后在 上面第2步的 生产者终端中输入一些字符串,如 sdfsadf a aa a a a a a a a a
,在ide的控制台上可以看到有信息输出
4/11/12 16:38:22 INFO scheduler.DAGScheduler: Stage 195 (take at DStream.scala:608) finished in 0.004 s
-------------------------------------------
Time: 1415781502000 ms
-------------------------------------------
(aa,1)
(a,9)
(sdfsadf,1)
说明程序成功运行。