DAY6--如晤
2020-03-26 本文已影响0人
如晤_ea28
学习R包,以dplyr
为例
1.配置镜像
你还在每次配置Rstudio的下载镜像吗?
目的:为了加速包的下载
为免去打开Rstudio都要运行一遍镜像配置的麻烦,就需要用到R的配置文件.Rprofile
- Rstudio最重要的两个配置文件:
(1).Renviron
:在刚开始运行Rstudio的时候,程序会查看许多配置内容,其中一个就是.Renviron
,它是为了设置R的环境变量;
.(2)Rprofile
:就是一个代码文件,如果启动时找到这个文件,那么就替我们先运行一遍(这个过程就是在启动Rstudio时完成的)
重启后打开运行,已经配置好
2.安装
R包安装命令(根据包存在的地址选择)
`install.packages(“包”) `#安装包存在于CRAN网站
`BiocManager::install(“包”)` #安装包存在于biocductor
(_install本质上也是调用install.packages)
3.加载
library(包)或者
require(包)
实例总结:dplyr
下载-安装-加载
options("repos" = c(CRAN="https://mirrors.tuna.tsinghua.edu.cn/CRAN/"))
options(BioC_mirror="https://mirrors.ustc.edu.cn/bioc/")
install.packages("dplyr")
library(dplyr)
-
dplyr五个基础函数
#先赋值:示例数据直接使用内置数据集iris的简化版
test <- iris[c(1:2,51:52,101:102),]
1.mutate(),新增列
> test <- iris[c(1:2,51:52,101:102),]
> mutate(test, new = Sepal.Length * Sepal.Width)
Sepal.Length Sepal.Width Petal.Length Petal.Width Species new
1 5.1 3.5 1.4 0.2 setosa 17.85
2 4.9 3.0 1.4 0.2 setosa 14.70
3 7.0 3.2 4.7 1.4 versicolor 22.40
4 6.4 3.2 4.5 1.5 versicolor 20.48
5 6.3 3.3 6.0 2.5 virginica 20.79
6 5.8 2.7 5.1 1.9 virginica 15.66
2.select(),按列筛选
#(1)按列号筛选
> select(test,1)
Sepal.Length
1 5.1
2 4.9
51 7.0
52 6.4
101 6.3
102 5.8
> select(test,c(1,5))
Sepal.Length Species
1 5.1 setosa
2 4.9 setosa
51 7.0 versicolor
52 6.4 versicolor
101 6.3 virginica
102 5.8 virginica
select(test,Sepal.Length)
Sepal.Length
1 5.1
2 4.9
51 7.0
52 6.4
101 6.3
102 5.8
#(2)按列名筛选
> select(test, Petal.Length, Petal.Width)
Petal.Length Petal.Width
1 1.4 0.2
2 1.4 0.2
51 4.7 1.4
52 4.5 1.5
101 6.0 2.5
102 5.1 1.9
> vars <- c("Petal.Length", "Petal.Width")
> select(test, one_of(vars))
Petal.Length Petal.Width
1 1.4 0.2
2 1.4 0.2
51 4.7 1.4
52 4.5 1.5
101 6.0 2.5
102 5.1 1.9
3.filter()筛选行
> filter(test, Species == "setosa")
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
> filter(test, Species == "setosa"&Sepal.Length > 5 )
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
> filter(test, Species %in% c("setosa","versicolor"))
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 7.0 3.2 4.7 1.4 versicolor
4 6.4 3.2 4.5 1.5 versicolor
4.arrange(),按某1列或某几列对整个表格进行排序
> arrange(test, Sepal.Length)#默认从小到大排序
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 4.9 3.0 1.4 0.2 setosa
2 5.1 3.5 1.4 0.2 setosa
3 5.8 2.7 5.1 1.9 virginica
4 6.3 3.3 6.0 2.5 virginica
5 6.4 3.2 4.5 1.5 versicolor
6 7.0 3.2 4.7 1.4 versicolor
> arrange(test, desc(Sepal.Length))#用desc从大到小
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 7.0 3.2 4.7 1.4 versicolor
2 6.4 3.2 4.5 1.5 versicolor
3 6.3 3.3 6.0 2.5 virginica
4 5.8 2.7 5.1 1.9 virginica
5 5.1 3.5 1.4 0.2 setosa
6 4.9 3.0 1.4 0.2 setosa
5.summarise():汇总
> summarise(test, mean(Sepal.Length), sd(Sepal.Length))
#对指定行计算平均值和标准差
mean(Sepal.Length) sd(Sepal.Length)
1 5.916667 0.8084965
> group_by(test, Species)
#按照Species分组
# A tibble: 6 x 5
# Groups: Species [3]
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
* <dbl> <dbl> <dbl> <dbl> <fct>
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3 1.4 0.2 setosa
3 7 3.2 4.7 1.4 versicolor
4 6.4 3.2 4.5 1.5 versicolor
5 6.3 3.3 6 2.5 virginica
6 5.8 2.7 5.1 1.9 virginica
> summarise(group_by(test, Species),mean(Sepal.Length), sd(Sepal.Length))
#按species分组后再计算每组Sepal.Length的平均值和标准差
# A tibble: 3 x 3
Species `mean(Sepal.Length)` `sd(Sepal.Length)`
<fct> <dbl> <dbl>
1 setosa 5 0.141
2 versicolor 6.7 0.424
3 virginica 6.05 0.354
-
dplyr两个实用技能
- 管道操作
%>%
(加载任意一个tidyverse包即可用管道符号)
> test %>%
+ group_by(Species) %>%
+ summarise(mean(Sepal.Length), sd(Sepal.Length))
# A tibble: 3 x 3
Species `mean(Sepal.Length)` `sd(Sepal.Length)`
<fct> <dbl> <dbl>
1 setosa 5 0.141
2 versicolor 6.7 0.424
3 virginica 6.05 0.354
2统计某列的unique值.count
> count(test,Species)
# A tibble: 3 x 2
Species n
<fct> <int>
1 setosa 2
2 versicolor 2
3 virginica 2
-
dplyr处理关系数据(将两个表连接)
两个表test1\2
> test1 <- data.frame(x = c('b','e','f','x'),
+ z = c("A","B","C",'D'),
+ stringsAsFactors = F)
> test2 <- data.frame(x = c('a','b','c','d','e','f'),
+ y = c(1,2,3,4,5,6),
+ stringsAsFactors = F)
1.內连inner_join
,取交集
> inner_join(test1, test2, by = "x")
x z y
1 b A 2
2 e B 5
2.左连left_join
> left_join(test1, test2, by = 'x')
x z y
1 b A 2
2 e B 5
3 f C 6
4 x D NA
3.全连full_join
> full_join( test1, test2, by = 'x')
x z y
1 b A 2
2 e B 5
3 f C 6
4 x D NA
5 a <NA> 1
6 c <NA> 3
7 d <NA> 4
4.半连接:返回能够与y表匹配的x表所有记录semi_join
> semi_join(x = test1, y = test2, by = 'x')
x z
1 b A
2 e B
3 f C
5.反连接:返回无法与y表匹配的x表的所记录anti_join
> anti_join(x = test2, y = test1, by = 'x')
x y
1 a 1
2 c 3
3 d 4
6.简单合并
创建表格
> test1 <- data.frame(x = c(1,2,3,4), y = c(10,20,30,40))
> test1
x y
1 1 10
2 2 20
3 3 30
4 4 40
> test2 <- data.frame(x = c(5,6), y = c(50,60))
> test2
x y
1 5 50
2 6 60
> test3 <- data.frame(z = c(100,200,300,400))
> test3
z
1 100
2 200
3 300
4 400
合并表格
> bind_rows(test1, test2)#函数需要两个表格列数相同
x y
1 1 10
2 2 20
3 3 30
4 4 40
5 5 50
6 6 60
> bind_cols(test1, test3)#需要两个数据框有相同的行数
x y z
1 1 10 100
2 2 20 200
3 3 30 300
4 4 40 400
(在相当于base包里的cbind()函数和rbind()函数;注意,bind_rows(),而bind_cols()函数则)