10_Flume之拦截器
2023-06-21 本文已影响0人
K__3f8b
1. 介绍
Inteceptor主要用来对event进行过滤和修改,Interceptor可以将处理结果传递给下一个Interceptor从而形成InterceptorChain。多个Interceptor在配置文件中以空格分隔,拦截器的顺序就是event处理的顺序,只有一个拦截器通过之后才会进行到下一个拦截器。Inteceptor相关源码在flume-ng-core的org.apache.flume.interceptor下。
2. 官方自带
flume中自带以下几种Inteceptor,可以实现自定义的拦截器,galaxy-tunnel中实现了DataFlowDest Inteceptor,根据ChannelGroup字段选择不同的数据通道。
- Timestamp Interceptor:该拦截器会在Event Header 中插入一个key是timestamp的KV对,value的值是相关的timestamp。该拦截器可以保护相关的已经存在的timestamp。
- Host Interceptor:该拦截器会在Event Header中插入当前agent运行机器的hostname或者ip,插入KV对
- Static Interceptor:该拦截器允许用户追加静态头部在所有的Event中
- UUIDInterceptor:用于在每个events header中生成一个UUID字符串。
- Searchand Replace Interceptor:该拦截器基于Java正则表达式提供简单的基于字符串的搜索和替换功能,与Java Matcher.replaceAll()方法中相同的规则
- RegexExtractor Interceptor:通过正则表达式来在header中添加指定的key,value则为正则匹配的部分
- Regex Filtering Interceptor:在日志采集的时候,可能有一些数据是我们不需要的,这样添加过滤拦截器,可以过滤掉不需要的日志,也可以根据需要收集满足正则条件的日志。
- Morphline Interceptor:该拦截器使用Morphline对每个events数据做相应的转换。关于Morphline的使用,可参考http://kitesdk.org/docs/current/morphlines/morphlines-reference-guide.html
3. 自定义拦截器
- 环境:Java - Maven pom.xml
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>cn.com.gc</groupId>
<artifactId>flume-custom-interceptor</artifactId>
<version>1.11</version>
<properties>
<java.version>1.8</java.version>
<maven.compiler.source>8</maven.compiler.source>
<maven.compiler.target>8</maven.compiler.target>
</properties>
<dependencies>
<dependency>
<groupId>org.apache.flume</groupId>
<artifactId>flume-ng-core</artifactId>
<version>1.9.0</version>
<!-- <scope>provided</scope> -->
</dependency>
<dependency>
<groupId>com.alibaba</groupId>
<artifactId>fastjson</artifactId>
<version>1.2.78</version>
</dependency>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>4.13.2</version>
<scope>test</scope>
</dependency>
<dependency>
<groupId>org.apache.commons</groupId>
<artifactId>commons-lang3</artifactId>
<version>3.3.2</version>
</dependency>
</dependencies>
<build>
<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<version>3.8.1</version>
<configuration>
<source>1.8</source>
<target>1.8</target>
<encoding>UTF-8</encoding>
</configuration>
</plugin>
<!--此工具会将全部依赖打包-->
<!-- <plugin>-->
<!-- <groupId>org.apache.maven.plugins</groupId>-->
<!-- <artifactId>maven-assembly-plugin</artifactId>-->
<!-- <version>3.3.0</version>-->
<!-- <configuration>-->
<!-- <descriptorRefs>-->
<!-- <descriptorRef>jar-with-dependencies</descriptorRef>-->
<!-- </descriptorRefs>-->
<!-- <archive>-->
<!-- <manifest>-->
<!-- <!–通过mainClass标签设置成主类的全类名FQCN–>-->
<!-- <!–<mainClass></mainClass>–>-->
<!-- </manifest>-->
<!-- </archive>-->
<!-- </configuration>-->
<!-- <executions>-->
<!-- <execution>-->
<!-- <id>make-assembly</id>-->
<!-- <phase>package</phase>-->
<!-- <goals>-->
<!-- <goal>single</goal>-->
<!-- </goals>-->
<!-- </execution>-->
<!-- </executions>-->
<!-- </plugin>-->
</plugins>
</build>
</project>
- 将数据中的 st 转化成时间戳,写入 header中,HDFSSink使用它来确定时间分区
package xxx.xxx.xxx.flume;
import xxx.xxx.xxx.flume.utils.DateUtil;
import com.alibaba.fastjson.JSONObject;
import com.google.common.collect.Lists;
import org.apache.flume.Context;
import org.apache.flume.Event;
import org.apache.flume.interceptor.Interceptor;
import java.nio.charset.StandardCharsets;
import java.util.List;
import java.util.Map;
/**
* 根据 st 给Event的header信息添加时间戳
*/
public class TimestampInterceptor implements Interceptor {
@Override
public void initialize() {
}
@Override
public Event intercept(Event event) {
try {
Map<String, String> headers = event.getHeaders();
String log = new String(event.getBody(), StandardCharsets.UTF_8);
JSONObject jsonObject = JSONObject.parseObject(log);
String st = jsonObject.getString("st");
// Flume HDFSSink要求单位为毫秒
long timeStamp = DateUtil.getTimeStamp(st, "yyyy-MM-dd HH:mm:ss.SSS");
headers.put("timestamp", String.valueOf(timeStamp));
return event;
} catch (Exception e) {
e.printStackTrace();
// TODO 异常数据抛弃。
return null;
}
}
@Override
public List<Event> intercept(List<Event> list) {
List<Event> intercepted = Lists.newArrayListWithCapacity(list.size());
for (Event event : list) {
Event interceptedEvent = intercept(event);
if (interceptedEvent != null) {
intercepted.add(interceptedEvent);
}
}
return intercepted;
}
public static class Builder implements Interceptor.Builder {
@Override
public Interceptor build() {
return new TimestampInterceptor();
}
@Override
public void configure(Context context) {
}
}
@Override
public void close() {
}
}
- 打包上传
将打包的jar放到 ${FLUME_HOME}/lib,如果拦截器里面使用其它依赖包,可以将这些包直接打进自定义拦截器的jar中,或者将其下载也放到lib下。
- 使用
# 命名 Agent 上的组件
a_app_info_to_hdfs.sources = s_app_info
a_app_info_to_hdfs.channels = c_app_info
a_app_info_to_hdfs.sinks = k_app_info
#############################################################################
# 数据采集 - Kafka To HDFS
#
# 数据源:
# 类型 = KafkaSource
# Topic = app_info_full
#
# channel:
# 类型 = file
# 记录 = ${FLUME_JOB_CONFIG_PATH}/log_channel_datas/../ app_info_dataDir | app_info_checkpointDir
#
# 数据出口:
# 类型 = HDFSSink
# HDFS Path = hdfs://${hadoopClusterName}/data/origin_data/log/app_info_full/yr=%Y/mon=%m/day=%d/hr=%H
# Hive TableName = app_info_full
# source
a_app_info_to_hdfs.sources.s_app_info.type = org.apache.flume.source.kafka.KafkaSource
a_app_info_to_hdfs.sources.s_app_info.batchSize = 5000
a_app_info_to_hdfs.sources.s_app_info.batchDurationMillis = 2000
# a_app_info_to_hdfs.sources.s_app_info.kafka.bootstrap.servers = ${kafkaCluster}
a_app_info_to_hdfs.sources.s_app_info.kafka.bootstrap.servers = ${kafkaCluster_acl}
a_app_info_to_hdfs.sources.s_app_info.kafka.consumer.security.protocol=SASL_PLAINTEXT
a_app_info_to_hdfs.sources.s_app_info.kafka.consumer.sasl.mechanism = PLAIN
a_app_info_to_hdfs.sources.s_app_info.kafka.consumer.sasl.jaas.config = org.apache.kafka.common.security.plain.PlainLoginModule required username="${kfk_user}" password="${kfk_pwd}" ;
a_app_info_to_hdfs.sources.s_app_info.kafka.topics = app_info_full
a_app_info_to_hdfs.sources.s_app_info.kafka.consumer.group.id = bigdata_flume
a_app_info_to_hdfs.sources.s_app_info.kafka.setTopicHeader = true
a_app_info_to_hdfs.sources.s_app_info.kafka.topicHeader = topic
a_app_info_to_hdfs.sources.s_app_info.interceptors = i1
a_app_info_to_hdfs.sources.s_app_info.interceptors.i1.type= xxx.xxx.xxx.flume.TimestampInterceptor$Builder
# channel
a_app_info_to_hdfs.channels.c_app_info.type = file
a_app_info_to_hdfs.channels.c_app_info.dataDirs = ${exec_log_path}/app_info_dataDir
a_app_info_to_hdfs.channels.c_app_info.checkpointDir = ${exec_log_path}/app_info_checkpointDir
a_app_info_to_hdfs.channels.c_app_info.capacity = 3000000
a_app_info_to_hdfs.channels.c_app_info.transactionCapacity = 20000
a_app_info_to_hdfs.channels.c_app_info.keep-alive = 5
# sink
a_app_info_to_hdfs.sinks.k_app_info.type = hdfs
a_app_info_to_hdfs.sinks.k_app_info.hdfs.path = hdfs://${hadoopClusterName}/data/origin_data/log/%{topic}/yr=%Y/mon=%m/day=%d/hr=%H
a_app_info_to_hdfs.sinks.k_app_info.hdfs.fileSuffix = _${hdfsFileSuffix}.gz
a_app_info_to_hdfs.sinks.k_app_info.hdfs.filePrefix = log_%Y%m%d%H%M
a_app_info_to_hdfs.sinks.k_app_info.hdfs.rollInterval = 0
a_app_info_to_hdfs.sinks.k_app_info.hdfs.rollSize = 125829120
a_app_info_to_hdfs.sinks.k_app_info.hdfs.rollCount = 0
a_app_info_to_hdfs.sinks.k_app_info.hdfs.minBlockReplicas = 1
a_app_info_to_hdfs.sinks.k_app_info.hdfs.round = true
a_app_info_to_hdfs.sinks.k_app_info.hdfs.roundValue = 1
a_app_info_to_hdfs.sinks.k_app_info.hdfs.roundUnit = hour
a_app_info_to_hdfs.sinks.k_app_info.hdfs.idleTimeout = 600
a_app_info_to_hdfs.sinks.k_app_info.hdfs.fileType = CompressedStream
a_app_info_to_hdfs.sinks.k_app_info.hdfs.codeC = gzip
a_app_info_to_hdfs.sinks.k_app_info.hdfs.writeFormat = Text
# source | channel | sink 关联
a_app_info_to_hdfs.sources.s_app_info.channels = c_app_info
a_app_info_to_hdfs.sinks.k_app_info.channel = c_app_info
#############################################################################