从头实现一个自己的汽车识别分类器(中)--训练模型篇

2019-08-26  本文已影响0人  坐下等雨

目录:
爬取数据篇
训练模型篇
汽车识别篇

训练模型篇

数据已经爬取完毕,接下来开始训练模型,先来看一下项目结构,如下图


首先需要介绍一下config.py,代码如下:

class Config(object):
    batch_size = 32 # 根据gpu适当增大或减小
    lr = 0.0002 # 学习率
    # lr_decay = None 学习衰减系数
    # step_size = None 学习率衰减步长
    root = './cars' # 数据集位置
    use_gpu = True # 是否使用GPU训练
    epochs = 100 # 迭代次数
    weight_decay = 0.001 # 正则化系数
    num_classes = 10 # 分类别数

这里写了一个Config类,里面设置了各种需要调解的超参数,训练模型时只需要讲此类实例化即可设置一些参数。比如学习率的设置,当然这样只是为了将超参数写一块,方便修改,也可以直接把参数直接设置到mian.py里。

opt = Config()
for epoch in opt.epochs:
      .......

接着是dataset.py文件,用于读取数据,并进行数据增强和随机打乱等操作,并为模型提供可迭代的batch_size数据。代码如下

from config import Config
from torch.utils.data import DataLoader, random_split
from torchvision.datasets import ImageFolder
from torchvision import transforms as tfs


opt = Config()
data_tfs = tfs.Compose([tfs.Resize([160,160]),
                         tfs.RandomHorizontalFlip(),
                         tfs.RandomRotation(45),
                         tfs.ToTensor(),
                         tfs.Normalize(mean = [0.485, 0.456, 0.406],
                                        std = [0.229, 0.224, 0.225])
                        ])


data_set = ImageFolder(opt.root, transform=data_tfs)
train_size = int(0.7 * len(data_set))
val_size = len(data_set) - train_size
train_set, val_set = random_split(data_set, [train_size, val_size])

train_loader = DataLoader(train_set, batch_size=opt.batch_size, shuffle=True, num_workers=4)
val_loader = DataLoader(val_set, batch_size=opt.batch_size, shuffle=False, num_workers=4)
# for x, y in val_loader:
#     print(x,y)
#     break
print('训练集:{}, 验证集:{}'.format(len(train_loader.dataset), len(val_loader.dataset)))
print('类别:', data_set.classes)

再接着就是models.py文件,此文件很简单,就是改写一些经典的卷积神经网络,使其适应我们的分类。另外还写了一个精简版的10层VGG网络,本次用的就是次网络。

n.Linear(512, num_classes)
        )

    def forward(self, x):
        x = self.features(x)
        x = x.view(x.size(0), -1)
        x = self.classifier(x)

        return x

    def _make_layers(self, cfg):
        layers = []
        in_channels = 3
        for v in cfg:
            if v == 'M':
                layers += [nn.MaxPool2d(2, 2)]
            else:
                layers += [nn.Conv2d(in_channels, v, kernel_size=3, padding=1),
                           nn.BatchNorm2d(v),
                           nn.ReLU(True)]
                in_channels = v
        return nn.Sequential(*layers)

def resnet(num_calsses):
    net = resnet(num_calsses)
    net.fc = nn.Linear(2048, num_calsses)
    # print(net)
    return net

def Alexnet(mun_classes):
    net = alexnet()
    net.classifier[6] = nn.Linear(4096, mun_classes)
    # print(net)
    return net

def squeezenet(num_classes):
    net = squeezenet1_0()
    net.classifier[1] = nn.Conv2d(512, num_classes, 1, 1)
    # print(net)
    return net

# x = torch.randn(1,3,160,160)
# net = VGG10('VGG10', 10)
# y = net(x)
# print(y.shape)

最后是训练文件mian.py,这里定义一个main函数,它对网络进行训练,然后保存一个验证集准确率最高的模型权重文件,返回训每个epoch下的训练集和测试集的loss以及准确率,并可视化。

import copy
import torch
import torch.nn as nn
from torch import optim
from config import Config
from models import VGG10, resnet, Alexnet, squeezenet
from dataset import train_loader, val_loader
import time
import os
import matplotlib.pyplot as plt

opt = Config()
device = torch.device('cuda' if opt.use_gpu else 'cpu')

net = VGG10('VGG10', opt.num_classes)
model = net.to(device)

optimizer = optim.Adam(model.parameters(), lr=opt.lr, weight_decay=opt.weight_decay)
# scheduler = optim.lr_scheduler.MultiStepLR(optimizer, milestones=[5, 10], gamma=opt.lr_decay)
criterion = nn.CrossEntropyLoss()
train_loader = train_loader
val_loader = val_loader

def main():
    train_loss_list = []
    train_acc_list = []
    val_loss_list = []
    val_acc_list = []

    best_model_wts = copy.deepcopy(model.state_dict())
    best_acc = 0.0
    for epoch in range(opt.epochs):
        since = time.time()
        print('epoch {}/{}'.format(epoch+1, opt.epochs))
        print('-' * 10)

        model.train()
        train_loss = 0.0
        train_corrects = 0.0
        for inputs, labels in train_loader:
            inputs, labels = inputs.to(device), labels.to(device)
            optimizer.zero_grad()
            outputs = model(inputs)
            loss = criterion(outputs, labels)

            loss.backward()
            optimizer.step()

            _, pred = torch.max(outputs, 1)
            train_loss += loss.item() * labels.size(0)
            train_corrects += (pred == labels).sum().item()
        epoch_train_loss = train_loss / len(train_loader.dataset)
        epoch_train_acc = train_corrects / len(train_loader.dataset)

        train_loss_list.append(epoch_train_loss)
        train_acc_list.append(epoch_train_acc)

        print('train loss:{}, acc:{}'.format(epoch_train_loss, epoch_train_acc))

        model.eval()
        val_loss = 0.0
        val_corrects = 0.0
        for inputs, labels in val_loader:
            inputs, labels = inputs.to(device), labels.to(device)
            outputs = model(inputs)
            loss = criterion(outputs, labels)
            _, pred = torch.max(outputs, 1)

            val_loss += loss.item() * labels.size(0)
            val_corrects += (pred == labels).sum().item()
        epoch_val_loss = val_loss / len(val_loader.dataset)
        epoch_val_acc = val_corrects / len(val_loader.dataset)

        val_loss_list.append(epoch_val_loss)
        val_acc_list.append(epoch_val_acc)

        print('val loss:{}, acc:{}'.format(epoch_val_loss, epoch_val_acc))

        if epoch_val_acc > best_acc:
            best_acc = epoch_val_acc
            best_model_wts = copy.deepcopy(model.state_dict())
        time_elapsed = time.time() - since
        print('time: {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60))
        print()
    if not os.path.isdir('checkpoint'):
        os.makedirs('checkpoint')
        torch.save(best_model_wts, './checkpoint/weights.pkl')

    print('Best val acc:{:.4f}'.format(best_acc))

    return train_loss_list, train_acc_list, val_loss_list, val_acc_list



if __name__ == '__main__':
    train_loss_list, train_acc_list, val_loss_list, val_acc_list = main()
    plt.plot(range(1, opt.epochs+1), train_loss_list, label='train_loss')
    plt.plot(range(1, opt.epochs+1), train_acc_list, label='train_acc')
    plt.plot(range(1, opt.epochs+1), val_loss_list, label='val_loss')
    plt.plot(range(1, opt.epochs+1), val_acc_list, label='val_acc')
    plt.legend()
    plt.show()

以上就是截止到模型训练篇的所有代码。


分享一下训练经历吧:
由于是第一次训练自己的数据,用了好多模型,调节的好多超参数,模型要么不收敛,要么严重过拟合。再加上硬件原因,那些很深的模型很吃显存,只能把batch_size设置成16甚至更小,并且训练一个epoch都需要很长时间。于是就先提取了一个二分类的小数据集,尝试各种模型,和参数。最终resnet50和VGG,效果比较好。于是直接上resnet50,奈何训练了大半天(每个epoch大概4-5分钟,100个epoch,电脑成了暖气片~。~),严重过拟合。我感觉到一万多的数据对这种体量的网络还是太小了。那就做一个精简版的VGG吧,层数减少到10,每层通道数减半。这样可以将batch_size增加到32了,并且每个epoch缩减为1m50s,最终训练效果还是不太理想。炼丹果然是门手艺活~

附上最终绘制的loss和acc曲线。



从图可以看到,大概训练至70次左右,val_loss不再下降,说明网络还是过拟合了。从头训练一次模型实在是很耗时间和电费~
暂且就用这个模型来识别汽车吧!


图片来自汽车之家论坛
上一篇下一篇

猜你喜欢

热点阅读