【2019-12-10】 spark ALS 训练数据可视化数据

2019-12-10  本文已影响0人  6g3y

知乎关注主题列表

package A

import java.io.File
import java.util

import org.apache.commons.io.FileUtils
import org.apache.spark.mllib.recommendation.{ALS, MatrixFactorizationModel, Rating}
import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}

object asd {

  def main(args: Array[String]): Unit = {
    val conf: SparkConf = new SparkConf().setMaster("local").setAppName("My App")
    val sc: SparkContext = new SparkContext(conf)
    val map = new util.HashMap[String, Int]

    val inputFile1: String = "topics/topic.csv"
    //    val inputFile2: String = "ml-20m/ratings.csv"
    var i = 0;
    val train = sc.textFile(inputFile1).flatMap(_.split("\n"))//.filter(_ => Math.random() > 0.97)
      .map(_.split(",") match {
        case Array(user, item, rate) => Rating(map.computeIfAbsent(user, _ => {
          i = i + 1;
          i
        }), item.toInt, math.log(rate.toDouble + math.E))
      })
    //    val model = ALS.train(train, 30, 15)
    val model = new ALS()
      .setIterations(20)
      .setRank(60)
      .setLambda(0.005)
      .run(train)
    model.save(sc,"ALS.model")
//    evaluateMode(train, model);
  }

  /**
   * 模型评估
   */
  private def evaluateMode(ratings: RDD[Rating], model: MatrixFactorizationModel) {

    //使用训练数据训练模型
    val usersProducets = ratings.map {
      case Rating(user, product, rate) => (user, product)
    }

    //预测数据
    val predictions = model.predict(usersProducets).map {
      case Rating(user, product, rate) => ((user, product), rate)
    }

    //将真实分数与预测分数进行合并
    val ratesAndPreds = ratings.map {
      case Rating(user, product, rate) =>
        ((user, product), rate)
    }.join(predictions)

    //计算均方
    val MSE = ratesAndPreds.map {
      case ((user, product), (r1, r2)) =>

        val err = (r1 - r2) //(math.pow(math.E, r1) - math.pow(math.E, r2))
        err * err
    }.mean()


    val sb = new StringBuilder("0,1,2,3\n")
    ratesAndPreds.map {
      case ((user, product), (r1, r2)) =>
        user + "," + product + "," + (math.pow(math.E,r1)-1) + "," + (math.pow(math.E,r2)-1) + "\n"
    }.take(999999999).foreach(sb ++= _)
    FileUtils.write(new File("s"),sb,false)


    //打印出均方差值
    println(s"MSE = ${MSE}")
  }

}

回答数目预测 X是原回答数目
Y是预计回答数目

还是可以勉强看成线性回归的拿来预测应该还是可以的 Figure_1.png
Figure_2.png
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd

CSV_FILE_PATH = 's'
df = pd.read_csv(CSV_FILE_PATH)
plt.figure(figsize=(7, 7))
print(df)

x = df['2']
y = df['3']
# scale = 100 * np.random.rand(n)
# s 表示散点的大小,形如 shape (n, )
# label 表示显示在图例中的标注
# alpha 是 RGBA 颜色的透明分量
# edgecolors 指定三点圆周的颜色
plt.scatter(x, y, s=2, alpha=0.3)
plt.title('Scatter')
plt.xlabel('x')
plt.ylabel('y')
plt.legend(loc='best')
plt.grid(True)
plt.show()

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>

    <groupId>asd</groupId>
    <artifactId>asd</artifactId>
    <version>1.0-SNAPSHOT</version>


    <repositories>
        <repository>
            <id>aliyunmaven</id>
            <url>http://maven.aliyun.com/nexus/content/groups/public/</url>
        </repository>
    </repositories>

    <properties>
        <spark.version>2.4.4</spark.version>
        <scala.version>2.12</scala.version>
    </properties>



    <dependencies>

        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-core_${scala.version}</artifactId>
            <version>${spark.version}</version>
        </dependency>

        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-mllib_${scala.version}</artifactId>
            <version>${spark.version}</version>
        </dependency>

    </dependencies>

</project>
上一篇 下一篇

猜你喜欢

热点阅读