python数据分析人工智能机器学习软件测试Python专家之路工具癖

ETL测试工具简介

2019-06-19  本文已影响26人  python测试开发

ETL测试

ETL测试过程与其他测试过程类似,包括一些阶段。

ETL测试的类型

我还想将ETL测试与数据库测试进行比较,但在此之前让我们看一下有关数据库测试的ETL测试类型。

下面给出了与数据库测试有关的ETL测试类型:

从上面的列表中可以看出,ETL测试与数据库测试非常相似,但事实是ETL测试涉及数据仓库测试而不是数据库测试。

ETL测试与数据库测试不同,还有其他一些事实。

让我们快速看看它们是什么:

ETL错误列表的表:

bug的类型 描述
计算错误 由于数学错误,最终输出错误
输入/输出错误 接受无效值、拒绝有效值
H/W错误 由于硬件问题,设备无响应
用户界面错误 与应用程序的GUI相关
加载条件错误 拒绝多个用户

如何在ETL测试中创建测试用例

ETL测试的主要目标是确保提取和转换的数据是否从源到目标系统准确加载。 ETL测试包括两个文档,它们是:

最流行的ETL测试工具列表

与自动化测试一样,ETL测试也可以自动化。 自动ETL测试可减少测试过程中的时间消耗,并有助于保持准确性。

Informatica数据验证

image.png

Informatica Data Validation是一个基于GUI的ETL测试工具,用于提取,[转换和加载(ETL)。 测试包括数据迁移之前和之后的表的比较。 此类测试可确保数据完整性,即正确加载数据量并以预期格式进入目标系统。

主要特点:

访问官方网站 :Informatica Data Validation

QuerySurge

image.png

主要特点 :

访问官方网站 :QuerySurge

iCEDQ

QuerySurge

iCEDQ是一个自动化的ETL测试工具,专门针对数据中心项目(如数据仓库,数据迁移等)所面临的问题而设计.iCEDQ在源系统和目标系统之间执行验证,验证和协调。 它确保迁移后数据是否完整,并避免将错误数据加载到目标系统中。

主要特点 :

Datagaps ETL Validator

image.png

ETL Validator工具专为ETL测试和大数据测试而设计。 它是数据集成项目的解决方案。 此类数据集成项目的测试包括各种数据类型,大量数据和各种源平台。 ETL Validator通过自动化帮助克服这些挑战,进一步有助于降低成本并最大限度地减少工作量。

Datagaps ETL Validator

QualiDI

image.png

QualiDi是一个自动化测试平台,提供端到端测试和ETL测试。 它可以自动化ETL测试并提高ETL测试的有效性。 它还可以减少静止周期并提高数据质量。 QualiDI非常容易识别不良数据和不合规数据。 QualiDI减少了回归周期和数据验证。

主要特点 :

访问官方网站: QualiDi

用于数据集成的 Open Studio

image.png

Talend Open Studio for Data Integration是一个开源工具,可以简化ETL测试。 它包括所有ETL测试功能和其他持续交付机制。 在Talend Data Integration工具的帮助下,用户可以使用各种操作系统在远程服务器上运行ETL作业。

ETL测试确保数据从源系统转换到目标而不会丢失任何数据,从而遵守转换规则。

主要特点 :

访问官方网站:Talend ETL Testing

参考资料

Codoid的ETL测试服务

Codoid的ETL和数据仓库测试服务包括从源到目标系统的数据迁移和数据验证。 ETL测试确保在将数据从源加载到目标系统时没有数据错误,没有错误数据或数据丢失。 它可以快速识别ETL过程中发生的任何数据错误或任何其他常见错误。

主要特点 :

访问官方网站:Codoid’s ETL Testing

Data-Centric Testing

数据中心测试工具执行强大的数据验证,以避免数据转换期间的数据丢失或数据不一致等任何故障。 它比较系统之间的数据,并确保加载到目标系统的数据在数据量,数据类型,格式等方面与源系统完全匹配。

主要特点 :

访问官方网站:Data-Centric Testing

SSISTester

image.png

SSISTester是一个框架,有助于SSIS包的单元和集成测试。 它还有助于在测试驱动的环境中创建ETL过程,从而有助于识别开发过程中的错误。 在实现ETL过程时会创建许多包,这些包需要在单元测试期间进行测试。 集成测试也是“实时测试”。

主要特点 :

访问官方网站: SSISTester

TestBench

TestBench是一个数据库管理和验证工具。 它是一个独特的解决方案,可解决与数据库相关的所有问题。 用户管理的数据回滚可提高测试效率和准确性。 它还有助于减少环境停机时间。 TestBench报告在测试环境中执行的所有插入,更新和删除的事务,并捕获事务之前和之后的数据状态。

主要特点 :

访问官方网站: TestBench

GTL QAceGen

QAceGen专门用于生成复杂的测试数据,自动化ETL回归套件以及验证应用程序的业务逻辑。 QAceGen根据ETL规范中定义的业务规则生成测试数据。 它创建了包含数据生成和数据验证语句的每个场景。

访问官方网站: QAceGen

Zuzena自动化测试服务

Zuzena是一种为数据仓库测试而开发的自动化测试服务。 它用于执行大型项目,如数据仓库,商业智能,它管理数据并执行集成和回归测试套件。 它自动管理ETL执行和结果评估。 它具有广泛的指标,可监控QA目标和团队绩效。

访问官方网站:uzena Automated Testing

DbFit

DbFit是一个开源测试工具,在GPL许可下发布。 它为任何数据库代码编写单元和集成测试。 这些测试易于维护,可以直接从浏览器执行。 这些测试使用表编写,并使用命令行或Java IDE执行。 它支持主要数据库,如Oracle,MySQL,DB2,SQL Server,PostgreSQL等。

访问官方网站: DbFit

AnyDbTest

AnyDbTest是专为DBA或数据库开发人员设计的自动化单元测试工具。 AnyDbTest使用XML编写测试用例,并允许使用excel电子表格作为测试用例的来源。 支持标准断言,如SetEqual,StrictEqual,IsSupersetOf,RecordCountEqual,Overlaps等。它支持各种类型的数据库,如MySQL,Oracle,SQL Server等。测试可以包括多个数据库,即源数据库可以是Oracle服务器和目标需要加载数据的数据库可以是SQL Server。

访问官方网站: AnyDbTest

99 Percentage ETL Testing

99 Percentage ETL Testing'确保任何数据库系统的数据完整性和生产协调。 它维护ETL映射表并验证行和列的源和目标数据库映射。 它还维护源数据库和目标数据库的DB Schema。 它支持生产验证测试,数据完整性和数据转换测试。

访问官方网站: 99 Percentage ETL Testing

要点

结论

ETL测试不仅是测试人员的职责,还涉及开发人员,业务分析师,数据库管理员(DBA)甚至用户。 ETL测试过程变得至关重要,因为它需要定期制定战略决策。
ETL测试被视为企业测试,因为它需要熟悉SDLC,SQL查询,ETL过程等。

上一篇 下一篇

猜你喜欢

热点阅读