arXiv dailyMachine Learning & Recommendation & NLP & DL

机器学习每日论文速递[08.29]

2019-08-29  本文已影响0人  arXiv每日论文速递

同步公众号(arXiv每日论文速递),回复'search 关键词'查询相关最新论文。
cs.LG 方向,今日共计59篇

【1】 Data ultrametricity and clusterability
标题:数据超度量性和聚类性
作者: Dan Simovici, Kaixun Hua
链接:https://arxi<wbr>v.org/abs/19<wbr>08.10833

【2】 Stochastic AUC Maximization with Deep Neural Networks
标题:基于深度神经网络的随机AUC最大化
作者: Mingrui Liu, Tianbao Yang
链接:https://arxi<wbr>v.org/abs/19<wbr>08.10831

【3】 Deep Actor-Critic Reinforcement Learning for Anomaly Detection
标题:用于异常检测的深度角色-批评者强化学习
作者: Chen Zhong, Senem Velipasalar
链接:https://arxi<wbr>v.org/abs/19<wbr>08.10755

【4】 Networked Control of Nonlinear Systems under Partial Observation Using Continuous Deep Q-Learning
标题:基于连续深度Q学习的部分观测非线性系统网络控制
作者: Junya Ikemoto, Toshimitsu Ushio
备注:6 pages, 9 figures, Accepted for presentation in the IEEE Conference on Decision and Control (CDC) 2019
链接:https://arxi<wbr>v.org/abs/19<wbr>08.10722

【5】 Automated Architecture Design for Deep Neural Networks
标题:深度神经网络的自动化体系结构设计
作者: Steven Abreu
链接:https://arxi<wbr>v.org/abs/19<wbr>08.10714

【6】 Unsupervised algorithm for disaggregating low-sampling-rate electricity consumption of households
标题:家庭低采样率用电量的无监督解聚算法
作者: Jordan Holweger, Nicolas Wyrsch
链接:https://arxi<wbr>v.org/abs/19<wbr>08.10713

【7】 Testing Neural Programs
标题:测试神经程序
作者: Md Rafiqul Islam Rabin, Mohammad Amin Alipour
备注:ASE 2019 Late Breaking Results
链接:https://arxi<wbr>v.org/abs/19<wbr>08.10711

【8】 Improving a State-of-the-Art Heuristic for the Minimum Latency Problem with Data Mining
标题:用数据挖掘改进最小延迟问题的最新启发式算法
作者: Ítalo Gomes Santana
链接:https://arxi<wbr>v.org/abs/19<wbr>08.10705

【9】 Emotion Recognition in Low-Resource Settings: An Evaluation of Automatic Feature Selection Methods
标题:低资源环境下的情感识别:自动特征选择方法的评价
作者: Fasih Haider, Saturnino Luz
链接:https://arxi<wbr>v.org/abs/19<wbr>08.10623

【10】 Bayes EMbedding (BEM): Refining Representation by Integrating Knowledge Graphs and Behavior-specific Networks
标题:贝叶斯嵌入(BEM):通过集成知识图和行为特定网络来精炼表示
作者: Yuting Ye, Hongxia Yang
备注:25 pages, 5 figures, 10 tables. CIKM 2019
链接:https://arxi<wbr>v.org/abs/19<wbr>08.10611

【11】 Heterogeneous Domain Adaptation via Soft Transfer Network
标题:通过软传输网络的异构域适配
作者: Yuan Yao, Yunming Ye
备注:Accepted by ACM Multimedia (ACM MM) 2019
链接:https://arxi<wbr>v.org/abs/19<wbr>08.10552

【12】 Rényi Differential Privacy of the Sampled Gaussian Mechanism
标题:采样高斯机制的Rényi差分隐私
作者: Ilya Mironov, Li Zhang
链接:https://arxi<wbr>v.org/abs/19<wbr>08.10530

【13】 O-MedAL: Online Active Deep Learning for Medical Image Analysis
标题:O-Medine:用于医学图像分析的在线主动深度学习
作者: Asim Smailagic, Hae Young Noh
链接:https://arxi<wbr>v.org/abs/19<wbr>08.10508

【14】 Similarity Kernel and Clustering via Random Projection Forests
标题:基于随机投影森林的相似核与聚类
作者: Donghui Yan, Zhiwei Qin
链接:https://arxi<wbr>v.org/abs/19<wbr>08.10506

【15】 Revealing Backdoors, Post-Training, in DNN Classifiers via Novel Inference on Optimized Perturbations Inducing Group Misclassification
标题:通过对优化扰动导致组错误分类的新推理揭示DNN分类器中的后门,训练后
作者: Zhen Xiang, George Kesidis
链接:https://arxi<wbr>v.org/abs/19<wbr>08.10498

【16】 The Function Representation of Artificial Neural Network
标题:人工神经网络的功能表示
作者: Zhongkui Ma
链接:https://arxi<wbr>v.org/abs/19<wbr>08.10493

【17】 Exploration-Enhanced POLITEX
标题:勘探增强型Politex
作者: Yasin Abbasi-Yadkori, Gellert Weisz
链接:https://arxi<wbr>v.org/abs/19<wbr>08.10479

【18】 Complex Deep Learning Models for Denoising of Human Heart ECG signals
标题:复杂深度学习模型在心电信号去噪中的应用
作者: Corneliu Arsene
链接:https://arxi<wbr>v.org/abs/19<wbr>08.10417

【19】 Multiresolution Transformer Networks: Recurrence is Not Essential for Modeling Hierarchical Structure
标题:多分辨率变压器网络:递归对于分层结构的建模不是必需的
作者: Vikas K. Garg, Hsiang-Fu Yu
链接:https://arxi<wbr>v.org/abs/19<wbr>08.10408

【20】 A Near-Optimal Change-Detection Based Algorithm for Piecewise-Stationary Combinatorial Semi-Bandits
标题:一种基于准最优变化检测的分段平稳组合半带算法
作者: Huozhi Zhou, Ee-Peng Lim
链接:https://arxi<wbr>v.org/abs/19<wbr>08.10402

【21】 On the Convergence Theory of Gradient-Based Model-Agnostic Meta-Learning Algorithms
标题:基于梯度的模型不可知元学习算法的收敛性理论
作者: Alireza Fallah, Asuman Ozdaglar
链接:https://arxi<wbr>v.org/abs/19<wbr>08.10400

【22】 New Loss Functions for Fast Maximum Inner Product Search
标题:快速最大内积搜索的新损失函数
作者: Ruiqi Guo, Xiang Wu
链接:https://arxi<wbr>v.org/abs/19<wbr>08.10396

【23】 High-Order Langevin Diffusion Yields an Accelerated MCMC Algorithm
标题:高阶Langevin扩散产生加速的MCMC算法
作者: Wenlong Mou, Michael I. Jordan
链接:https://arxi<wbr>v.org/abs/19<wbr>08.10859

【24】 Self-supervised Recurrent Neural Network for 4D Abdominal and In-utero MR Imaging
标题:用于4D腹部和宫内磁共振成像的自监督递归神经网络
作者: Tong Zhang, Maria Deprez
备注:Accepted by MICCAI 2019 workshop on Machine Learning for Medical Image Reconstruction
链接:https://arxi<wbr>v.org/abs/19<wbr>08.10842

【25】 An Empirical Comparison on Imitation Learning and Reinforcement Learning for Paraphrase Generation
标题:释义生成中模仿学习和强化学习的实证比较
作者: Wanyu Du, Yangfeng Ji
备注:9 pages, 2 figures, EMNLP2019
链接:https://arxi<wbr>v.org/abs/19<wbr>08.10835

【26】 UWB-GCN: Hardware Acceleration of Graph-Convolution-Network through Runtime Workload Rebalancing
标题:UWB-GCN:通过运行时工作负载重新平衡实现图形卷积网络的硬件加速
作者: Tong Geng, Martin Herbordt
链接:https://arxi<wbr>v.org/abs/19<wbr>08.10834

【27】 An Online Evolving Framework for Modeling the Safe Autonomous Vehicle Control System via Online Recognition of Latent Risks
标题:通过在线识别潜在风险的安全自主车辆控制系统建模的在线演化框架
作者: Teawon Han, Umit Ozguner
链接:https://arxi<wbr>v.org/abs/19<wbr>08.10823

【28】 Image Captioning with Sparse Recurrent Neural Network
标题:基于稀疏回归神经网络的图像字幕
作者: Jia Huei Tan, Joon Huang Chuah
链接:https://arxi<wbr>v.org/abs/19<wbr>08.10797

【29】 Multi-Objective Automatic Machine Learning with AutoxgboostMC
标题:基于AutoxgboostMC的多目标自动机器学习
作者: Florian Pfisterer, Bernd Bischl
链接:https://arxi<wbr>v.org/abs/19<wbr>08.10796

【30】 A Nonconvex Approach for Exact and Efficient Multichannel Sparse Blind Deconvolution
标题:一种精确有效的多通道稀疏盲解卷积的非凸方法
作者: Qing Qu, Zhihui Zhu
链接:https://arxi<wbr>v.org/abs/19<wbr>08.10776

【31】 Reinforcement Learning: Prediction, Control and Value Function Approximation
标题:强化学习:预测、控制和值函数逼近
作者: Haoqian Li, Thomas Lau
链接:https://arxi<wbr>v.org/abs/19<wbr>08.10771

【32】 Lecture Notes: Selected topics on robust statistical learning theory
标题:课堂讲稿:稳健统计学习理论选题
作者: Matthieu Lerasle
链接:https://arxi<wbr>v.org/abs/19<wbr>08.10761

【33】 Information-Theoretic Lower Bounds for Compressive Sensing with Generative Models
标题:生成模型压缩感知的信息论下界
作者: Zhaoqiang Liu, Jonathan Scarlett
链接:https://arxi<wbr>v.org/abs/19<wbr>08.10744

【34】 Estimation of Individualized Decision Rules Based on an Optimized Covariate-Dependent Equivalent of Random Outcomes
标题:基于优化协变量依赖随机结果等价物的个性化决策规则估计
作者: Zhengling Qi, Jong-Shi Pang
链接:https://arxi<wbr>v.org/abs/19<wbr>08.10742

【35】 Facial age estimation by deep residual decision making
标题:基于深度残差决策的人脸年龄估计
作者: Shichao Li, Kwang-Ting Cheng
链接:https://arxi<wbr>v.org/abs/19<wbr>08.10737

【36】 DeepCopy: Grounded Response Generation with Hierarchical Pointer Networks
标题:DeepCopy:基于分层指针网络的接地响应生成
作者: Semih Yavuz, Dilek Hakkani-Tur
链接:https://arxi<wbr>v.org/abs/19<wbr>08.10731

【37】 Confidential Deep Learning: Executing Proprietary Models on Untrusted Devices
标题:机密深度学习:在不可信设备上执行专有模型
作者: Peter M. VanNostrand, Robert J. Walls
链接:https://arxi<wbr>v.org/abs/19<wbr>08.10730

【38】 Discourse-Aware Semantic Self-Attention for Narrative Reading Comprehension
标题:叙事阅读理解中的语篇意识语义自我注意
作者: Todor Mihaylov, Anette Frank
备注:Accepted as a long conference paper to EMNLP-IJCNLP 2019
链接:https://arxi<wbr>v.org/abs/19<wbr>08.10721

【39】 Guided Dialog Policy Learning: Reward Estimation for Multi-Domain Task-Oriented Dialog
标题:引导式对话策略学习:多领域任务导向对话的奖励估计
作者: Ryuichi Takanobu, Minlie Huang
备注:EMNLP 2019 long paper
链接:https://arxi<wbr>v.org/abs/19<wbr>08.10719

【40】 Effective and Efficient Network Embedding Initialization via Graph Partitioning
标题:通过图划分进行有效和高效的网络嵌入初始化
作者: Wenqing Lin, Hongyun Cai
链接:https://arxi<wbr>v.org/abs/19<wbr>08.10697

【41】 Spam Review Detection with Graph Convolutional Networks
标题:基于图卷积网络的垃圾邮件审查检测
作者: Ao Li, Dong Li
备注:Accepted at CIKM 2019
链接:https://arxi<wbr>v.org/abs/19<wbr>08.10679

【42】 Method and System for Image Analysis to Detect Cancer
标题:用于图像分析以检测癌症的方法和系统
作者: Waleed A. Yousef, Naglaa M. Abdelrazek
链接:https://arxi<wbr>v.org/abs/19<wbr>08.10661

【43】 Exploiting Multiple Embeddings for Chinese Named Entity Recognition
标题:利用多重嵌入进行中文命名实体识别
作者: Canwen Xu, Chenliang Li
备注:accepted at CIKM 2019
链接:https://arxi<wbr>v.org/abs/19<wbr>08.10657

【44】 Machine-learning techniques for the optimal design of acoustic metamaterials
标题:声学超材料优化设计的机器学习技术
作者: Andrea Bacigalupo, Luigi Gambarotta
链接:https://arxi<wbr>v.org/abs/19<wbr>08.10645

【45】 Onto Word Segmentation of the Complete Tang Poems
标题:论唐诗全集的分词
作者: Chao-Lin Liu
备注:5 pages, 2 tables, presented at the 2019 International Conference on Digital Humanities (ADHO)
链接:https://arxi<wbr>v.org/abs/19<wbr>08.10621

【46】 Classical Chinese Sentence Segmentation for Tomb Biographies of Tang Dynasty
标题:唐代墓葬传记文言句子切分
作者: Chao-Lin Liu, Yi Chang
备注:6 pages, 3 figures, 2 tables, presented at the 2019 International Conference on Digital Humanities (ADHO)
链接:https://arxi<wbr>v.org/abs/19<wbr>08.10606

【47】 STMARL: A Spatio-Temporal Multi-Agent Reinforcement Learning Approach for Traffic Light Control
标题:STMARL:一种用于交通灯控制的时空多Agent强化学习方法
作者: Yanan Wang, Hui Xiong
链接:https://arxi<wbr>v.org/abs/19<wbr>08.10577

【48】 On Inferring Training Data Attributes in Machine Learning Models
标题:机器学习模型中训练数据属性的推断
作者: Benjamin Zi Hao Zhao, Mohamed Ali Kaafar
备注:Accepted by PPML'19, a CCS workshop. Submission of 4-pages bar references, and appendix
链接:https://arxi<wbr>v.org/abs/19<wbr>08.10558

【49】 CAMEL: A Weakly Supervised Learning Framework for Histopathology Image Segmentation
标题:CAMEL:一种用于组织病理学图像分割的弱监督学习框架
作者: Gang Xu, Wei Xu
备注:10 pages, 9 figures, accepted by ICCV 2019
链接:https://arxi<wbr>v.org/abs/19<wbr>08.10555

【50】 Linear Convergence of Adaptive Stochastic Gradient Descent
标题:自适应随机梯度下降的线性收敛性
作者: Yuege Xie, Rachel Ward
链接:https://arxi<wbr>v.org/abs/19<wbr>08.10525

【51】 Domain-Agnostic Learning with Anatomy-Consistent Embedding for Cross-Modality Liver Segmentation
标题:基于解剖一致性嵌入的域不可知学习用于跨模态肝脏分割
作者: Junlin Yang, James S. Duncan
链接:https://arxi<wbr>v.org/abs/19<wbr>08.10489

【52】 Embracing Imperfect Datasets: A Review of Deep Learning Solutions for Medical Image Segmentation
标题:拥抱不完美数据集:医学图像分割深度学习解决方案综述
作者: Nima Tajbakhsh, Xiaowei Ding
链接:https://arxi<wbr>v.org/abs/19<wbr>08.10454

【53】 Interactive Machine Comprehension with Information Seeking Agents
标题:与信息搜索代理的交互式机器理解
作者: Xingdi Yuan, Adam Trischler
链接:https://arxi<wbr>v.org/abs/19<wbr>08.10449

【54】 Ensemble-Based Deep Reinforcement Learning for Chatbots
标题:基于集成的聊天机器人深度强化学习
作者: Heriberto Cuayáhuitl, Jihie Kim
备注:arXiv admin note: text overlap with arXiv:1908.10331
链接:https://arxi<wbr>v.org/abs/19<wbr>08.10422

【55】 Hierarchical Text Classification with Reinforced Label Assignment
标题:具有增强标签分配的分层文本分类
作者: Yuning Mao, Xiang Ren
备注:EMNLP 2019
链接:https://arxi<wbr>v.org/abs/19<wbr>08.10419

【56】 An Energy Approach to the Solution of Partial Differential Equations in Computational Mechanics via Machine Learning: Concepts, Implementation and Applications
标题:通过机器学习求解计算力学偏微分方程的能量方法:概念、实现和应用
作者: Esteban Samaniego, Xiaoying Zhuang
链接:https://arxi<wbr>v.org/abs/19<wbr>08.10407

【57】 A Data-Efficient Deep Learning Approach for Deployable Multimodal Social Robots
标题:一种数据高效的可部署多模态社交机器人深度学习方法
作者: Heriberto Cuayáhuitl
链接:https://arxi<wbr>v.org/abs/19<wbr>08.10398

【58】 Feature Gradients: Scalable Feature Selection via Discrete Relaxation
标题:特征梯度:通过离散松弛进行可缩放特征选择
作者: Rishit Sheth, Nicolo Fusi
链接:https://arxi<wbr>v.org/abs/19<wbr>08.10382

【59】 Attribute-Guided Sketch Generation
标题:属性引导的草图生成
作者: Hao Tang, Yan Yan
备注:7 pages, 6 figures, accepted to FG 2019
链接:https://arxi<wbr>v.org/abs/19<wbr>01.09774

机器翻译,仅供参考

上一篇下一篇

猜你喜欢

热点阅读