机器学习实战(基于Sklearn和tensorflow)第二章学
机器学习实战 书籍第二章例子学习笔记
书中源码,here文中还有很多扩展知识和更新方法,很值得学习
本文地址here
注:
1.增加CustomLabelBinarizer转换器解决参数传递问题(出现args参数数量错误)
2.在评估数据集some_data报错 因为选取数据object那个对象进行稀疏向量表示时会出现长度不是样本的5维,例如选择了5组数据,原本第一组属性是object应该是[1,0,0,0,0]表示一个值,但是因为选取5组数据使用one-hot编码后样本种类不足5导致第一组属性是object表示是[1,0,0] 那么长度就不一致了,预测会报错。** (5, 14) (1000, 15) (10000, 16) **
主要分为获取数据、数据分析可视化、数据预处理、选择和训练模型、分析模型几个部分。
在这里插入图片描述
获取数据(数据下载 测试集获取)
import os
import tarfile
from six.moves import urllib
DOWNLOAD_ROOT = "https://raw.githubusercontent.com/ageron/handson-ml/master/"
HOUSING_PATH = "datasets/housing"
HOUSING_URL = DOWNLOAD_ROOT + HOUSING_PATH + "/housing.tgz"
def fetch_housing_data(housing_url = HOUSING_URL, housing_path = HOUSING_PATH):
print("download from url : ", housing_url)
if not os.path.isdir(housing_path):
os.makedirs(housing_path)
tgz_path = os.path.join(housing_path, "housing.tgz")
urllib.request.urlretrieve(housing_url, tgz_path)
housing_tgz = tarfile.open(tgz_path)
housing_tgz.extractall(path=housing_path)
housing_tgz.close()
fetch_housing_data()
import pandas as pd
def load_housing_data(housing_path = HOUSING_PATH):
csv_path = os.path.join(housing_path, "housing.csv")
return pd.read_csv(csv_path)
data = load_housing_data()
注: six.moves 兼容py2 py3
当然如果确认环境 也可以使用
import urllib.request
urllib.request.urlopen("http://")
pandas 查看原始数据常用
- info() 数据简单描述
- describe() 数值属性摘要 count max min mean std(标准差 数据离散程度)这里的空值会被忽略
- value_counts() 查看数据基本分类
data.ocean_proximity.value_counts()
data.describe()
%matplotlib inline
import matplotlib.pyplot as plt
data.longitude.hist(bins = 50, figsize = (4, 3))
plt.show()
创建测试集
测试集创建一次之后避免变化,四种方法:
1.运行一次之后保存测试数据集
2.设定随机种子,例如permutation产生随机数之前运行 np.random.seed(1)使得每次产生的随机数和首次一致(程序重新运行就失效了)
sklearn提供了类似第二种方法函数:
from sklearn.model_selection import train_test_split
train_set, test_set = train_test_split(data, test_size=0.2, random_state=42)
3.计算示例的hash 取hash最后一个字节 如果该值小于等于51 即(256的20%)当作测试集
4.数据分层取样 对于数据特征较少,且数据与某属性关联较大
例如书籍上分析预测房价问题,房价和用户收入关联很大。例如用户收入聚集在2~5万,2万10人 3万20人,4万30人,5万30万,大于5万10人。那么收入比例分别是0.1, 0.2, 0.3, 0.3, 0.1,那么纯随机采样可能会出现和样本很大偏差。所以采用分层取样就可以得到和总样本基本一致的分布
#随机数
import numpy as np
def split_train_test(data, test_ratio):
shuffled_indices = np.random.permutation(len(data))
test_set_size = int(len(data) * test_ratio)
test_indices = shuffled_indices[:test_set_size]
train_indices = shuffled_indices[test_set_size:]
return data.iloc[train_indices], data.iloc[test_indices]
train_set, test_set = split_train_test(data, test_ratio=0.2)
print("train len : ", len(train_set), " test len : ", len(test_set))
#hash
import hashlib
def test_set_check(identifier, test_ratio, hash):
return hash(np.int64(identifier)).digest()[-1] < 256 * test_ratio
def split_train_test_by_id(data, test_ratio, id_column, hash=hashlib.md5):
ids = data[id_column]
in_test_set = ids.apply(lambda id_: test_set_check(id_, test_ratio, hash))
return data.loc[~in_test_set], data.loc[in_test_set]
#使用index作为索引
housing_with_id = data.reset_index()
train_set, test_set = split_train_test_by_id(housing_with_id, 0.2, "index")
# 或者可以使用地区经纬度进行计算
housing_with_id["id"] = data["longitude"] * 1000 + data["latitude"]
train_set, test_set = split_train_test_by_id(housing_with_id, 0.2, "id")
from sklearn.model_selection import train_test_split
#random_state 保存随机状态
train_set, test_set = train_test_split(data, test_size=0.2, random_state=42)
print(train_set.shape,test_set.shape)
#分层取样
#数据预处理 较少分层数量 /1.5 where满足条件时保留原始值,不满足条件时赋值5.0
data["income_cat"] = np.ceil(data["median_income"] / 1.5)
data["income_cat"].where(data["income_cat"] < 5, 5.0, inplace = True)
from sklearn.model_selection import StratifiedShuffleSplit
#n_splits是将训练数据分成train/test对的组数 此处只需要一组故为1 如果是多组可以发现样本分布概率基本一致
split = StratifiedShuffleSplit(n_splits=1, test_size=0.2, random_state=42)
for train_index, test_index in split.split(data, data["income_cat"]):
strat_train_set = data.loc[train_index]
strat_test_set = data.loc[test_index]
print("origin data percentage : " , data["income_cat"].value_counts()/ len(data))
print("test sample data percentage : " , strat_test_set["income_cat"].value_counts()/ len(strat_test_set))
#分组好之后删除income_cat数据
for item in (strat_train_set, strat_test_set):
item.drop("income_cat", axis = 1, inplace=True)
注 : 例如输入值为1 则hash(np.int64(identifier)).digest() 得到 3\xcd\xec\xcc\xce\xbe\x802\x9f\x1f\xdb\xee\x7fXt\xcb
取最后一个即0xcb 即203 203<(256*0.2) 所以不是测试集
从数据探索和可视化中获得洞见
地理数据可视化
# 简单绘制经纬度
# data.plot(kind = "scatter", x = "longitude", y = "latitude", alpha = 0.1)
# s大小代表人口数量多少 c颜色按照右侧越大越靠近顶部颜色 cmap指定颜色分布向量
data.plot(kind="scatter", x="longitude", y="latitude", alpha=0.3, s=data.population/100,
label="population", c="median_house_value", cmap=plt.cm.jet, colorbar=True)
plt.legend()
在这里插入图片描述
寻找相关性
1.数据集不大情况下 可使用corr 公式如下
2.还可以使用pandas scatter_matrix
corr_matrix = data.corr()
from pandas.plotting import scatter_matrix
attributes = ["median_house_value", "median_income", "total_rooms", "housing_median_age"]
scatter_matrix(data[attributes], figsize=(12, 8))
在这里插入图片描述
数据预处理
- 提取labels
- 数据清理
1.丢失缺失的区域
2.放弃这个属性
3.填充缺失值
4.pandas Imputer
data = strat_train_set.drop("median_house_value", axis=1)
housing_labels = strat_train_set["median_house_value"].copy()
# data.dropna(subset=["total_bedrooms"])
# data.drop("total_bedrooms", axis = 1)
median = data["total_bedrooms"].median()
data.total_bedrooms = data.total_bedrooms.fillna(median)
data.loc[data["total_bedrooms"].isnull()]#查看是否有空数据
from sklearn.impute import SimpleImputer
imputer = SimpleImputer(strategy="median")
# 因为中位数只能在数值属性操作 ocean_proximity是object类型
housing_num = data.drop("ocean_proximity", axis = 1)
imputer.fit(housing_num)
#X是一个numpy array格式
X = imputer.transform(housing_num)
housing_tr = pd.DataFrame(X, columns=housing_num.columns)
处理文本和分类属性
- LabelEncoder转成数字 OneHotEncoder转成向量
- LabelBinarizer直接转换成稀疏矩阵
from sklearn.preprocessing import LabelEncoder
encoder = LabelEncoder()
housing_cat = data["ocean_proximity"]
housing_cat_encoded = encoder.fit_transform(housing_cat)
from sklearn.preprocessing import OneHotEncoder
encoder = OneHotEncoder(categories='auto')
# reshape 转成n*1维向量 输出是Numpy array
housing_cat_1hot = encoder.fit_transform(housing_cat_encoded.reshape(-1, 1))
housing_cat_1hot
from sklearn.preprocessing import LabelBinarizer
encoder = LabelBinarizer()
housing_cat_1hot = encoder.fit_transform(housing_cat)
housing_cat_1hot
自定义转换器
定义自己的转换器
- fit
- transform
- fit_transform 相当于fit 和 transform
from sklearn.base import BaseEstimator, TransformerMixin
rooms_ix, bedrooms_ix, population_ix, household_ix = 3,4,5,6
class CombinedAttributesAdder(BaseEstimator, TransformerMixin):
"""主要是实现新增两列并通过参数add_bedrooms_per_room判断是否增加第三列"""
def __init__(self, add_bedrooms_per_room = True):
self.add_bedrooms_per_room = add_bedrooms_per_room
def fit(self, X, y = None):
return self
def transform(self, X, y=None):
rooms_per_household = X[:, rooms_ix] / X[:, household_ix]#每个家庭拥有的房间数
population_per_household = X[:, population_ix] / X[:, household_ix]#平均人口数
if self.add_bedrooms_per_room:
bedrooms_per_room = X[:, bedrooms_ix] / X[:, rooms_ix]
#np.r_是按列连接两个矩阵,就是把两矩阵上下相加,要求列数相等。
#np.c_是按行连接两个矩阵,就是把两矩阵左右相加,要求行数相等。
return np.c_[X, rooms_per_household, population_per_household, bedrooms_per_room]
else:
return np.c_[X, rooms_per_household, population_per_household]
attr_adder = CombinedAttributesAdder(add_bedrooms_per_room=False)
housing_extra_attribs = attr_adder.transform(data.values)
print(housing_extra_attribs.shape, data.shape)
特征缩放
- 最大-最小缩放(归一化, 减去最小值并除以最大值和最小值差值,容易受到极值影响,如果最大值或最小值是错误数据)
- 标准化 (减去平均值并除以方差)
转换流水线
- pipeline
按照转换器顺序 将上一个输出作为下一个的输入
有了数值处理的流水线
+单个流水线(那个object类型的字段) - FeatureUnion
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.impute import SimpleImputer
#中位数值 添加列 标准化
num_pipeline = Pipeline([
('imputer', SimpleImputer(strategy='median')),
('attribs_adder', CombinedAttributesAdder()),
('std_scaler', StandardScaler())
])
housing_num_str = num_pipeline.fit_transform(housing_num)
添加DataFrameSeletor转换器 用于筛选字段
from sklearn.base import BaseEstimator, TransformerMixin
class DataFrameSelector(BaseEstimator, TransformerMixin) :
def __init__(self, attribute_names):
self.attribute_names = attribute_names
def fit(self, X):
return self
def transform(self, X):
return X[self.attribute_names].values
from sklearn.pipeline import FeatureUnion
num_attribs = list(housing_num)
cat_attribs = ["ocean_proximity"]
class CustomLabelBinarizer(BaseEstimator, TransformerMixin):
def __init__(self, sparse_output=False):
self.sparse_output = sparse_output
def fit(self, X, y=None):
self.enc = LabelBinarizer(sparse_output=self.sparse_output)
self.enc.fit(X)
return self
def transform(self, X, y=None):
return self.enc.transform(X)
#处理除object属性外的其他字段 DataFrameSeletor选择待处理字段
num_pipeline = Pipeline([
('selector', DataFrameSelector(num_attribs)),
('imputer', SimpleImputer(strategy='median')),
('attribs_adder', CombinedAttributesAdder()),
('std_scaler', StandardScaler())
])
cat_pipeline = Pipeline([
('selector', DataFrameSelector(cat_attribs)),
('label_binarizer', CustomLabelBinarizer())
])
full_pipeline = FeatureUnion(transformer_list=[
("num_pipeline", num_pipeline),
("cat_pipeline", cat_pipeline)
])
housing_prepared = full_pipeline.fit_transform(data)
选择和训练模型
训练和评估数据集
from sklearn.linear_model import LinearRegression
lin_reg = LinearRegression()
lin_reg.fit(housing_prepared, housing_labels)
print(housing_prepared.shape, data.shape,data.columns)
some_data = data.iloc[0:7000]
some_labels = housing_labels.iloc[0:7000]
some_data_prepared = full_pipeline.fit_transform(some_data)
#使sklearn mean_squere_error来测量均方误差
from sklearn.metrics import mean_squared_error
housing_predictions = lin_reg.predict(housing_prepared)
lin_mse = mean_squared_error(housing_labels, housing_predictions)
lin_rmse = np.sqrt(lin_mse)
lin_rmse
引入决策树模型
当然在验证模型准确率可以使用之前分离好的测试集,但对于模型训练过程来说使用验证集基本没问题情况下再进行测试
from sklearn.tree import DecisionTreeRegressor
tree_reg = DecisionTreeRegressor()
tree_reg.fit(housing_prepared, housing_labels)
housing_predictions = tree_reg.predict(housing_prepared)
tree_mse = mean_squared_error(housing_labels, housing_predictions)
tree_rmse = np.sqrt(tree_mse)
tree_rmse
使用交叉验证进行评估
from sklearn.model_selection import cross_val_score
#cv=10 表示训练集分割成10个不同的子集 每次取出9个fold进行训练 1个进行评估
scores = cross_val_score(tree_reg, housing_prepared, housing_labels, scoring="neg_mean_squared_error", cv = 10)
rmse_scores = np.sqrt(-scores)
def display_scores(scores):
print("Scores : ", scores)
print("Means : ", scores.mean())
print("Standard deviation : ", scores.std())
display_scores(rmse_scores)
lin_scores = cross_val_score(lin_reg, housing_prepared, housing_labels, scoring="neg_mean_squared_error", cv = 10)
lin_rmse_scores = np.sqrt(-lin_scores)
display_scores(lin_rmse_scores)
from sklearn.ensemble import RandomForestRegressor
forest_reg = RandomForestRegressor()
# forest_reg.fit(housing_prepared, housing_labels)
forest_scores = cross_val_score(forest_reg, housing_prepared, housing_labels, scoring="neg_mean_squared_error", cv = 10)
forest_rmse_scores = np.sqrt(-forest_scores)
display_scores(forest_rmse_scores)
保存模型
from sklearn.externals import joblib
joblib.dump(forest_reg, "my_forest_model.pkl")
my_forest_model = joblib.load("my_forest_model.pkl")
微调模型
- 手动改参数 但是比较繁琐
- 使用sklearn GridSearch将预设参数设置好,并进行找出最佳组合
n_estimators:表示森林里树的个数。理论上是越大越好。但是伴随着就是计算时间的增长。但是并不是取得越大就会越好,预测效果最好的将会出现在合理的树个数。
max_features:随机选择特征集合的子集合,并用来分割节点。子集合的个数越少,方差就会减少的越快,但同时偏差就会增加的越快。
grid_search.best_params_ 最佳的参数组合
grid_search.best_estimator_ 最好估算器
grid_search.cv_results_评估分数 - 当组合参数数量较少时可以使用使用GridSearch 但当超参数在一个范围时,优先选择RandomizedSearchCV,该方法随机获取参数
- 集成方法 通过对表现最优的模型组合起来
from sklearn.model_selection import GridSearchCV
param_grid = [
{'n_estimators': [3, 10, 30], 'max_features':[2, 4, 6, 8]},
{'bootstrap' : [False], 'n_estimators':[3, 10], 'max_features':[2, 3, 4]}
]
forest_reg = RandomForestRegressor()
grid_search = GridSearchCV(forest_reg, param_grid, cv=5, scoring='neg_mean_squared_error')
grid_search.fit(housing_prepared, housing_labels)
分析最佳模型
- 获取属性重要性分数,通过对该分数分析得出哪些属性对模型影响较大
- 使用之前训练集分析模型
feature_importances = grid_search.best_estimator_.feature_importances_
extra_attribs = ["rooms_per_hhold", "pop_per_hhold", "bedrooms_per_room"]
cat_one_hot_attribs = list(encoder.classes_)
attributes = num_attribs + extra_attribs + cat_one_hot_attribs
sorted(zip(feature_importances, attributes), reverse=True)
final_model = grid_search.best_estimator_
X_test = strat_test_set.drop("median_house_value", axis=1)
y_test = strat_test_set["median_house_value"].copy()
X_test_prepared = full_pipeline.transform(X_test)
final_predictions = final_model.predict(X_test_prepared)
final_mse = mean_squared_error(y_test, final_predictions)
final_rmse = np.sqrt(final_mse)
final_rmse