三 isa结构分析
联合体和位域
位域:是指信息在存储时,并不需要占用一个完整的字节, 而只需占几个或一个二进制位。例如在存放一个开关量时,只有0和1 两种状态, 用一位二进位即可。为了节省存储空间,并使处理简便,C语言又提供了一种数据结构,称为“位域”或“位段”。所谓“位域”是把一个字节中的二进位划分为几 个不同的区域, 并说明每个区域的位数。每个域有一个域名,允许在程序中按域名进行操作。 这样就可以把几个不同的对象用一个字节的二进制位域来表示。
联合体:在进行某些算法的C语言编程的时候,需要使几种不同类型的变量存放到同一段内存单元中。也就是使用覆盖技术,几个变量互相覆盖。这种几个不同的变量共同占用一段内存的结构,在C语言中,被称作“共用体”类型结构,简称共用体,也叫联合体。
那么,我们可以把联合体和位域结合起来定义数据类型。 例如下面:
union
{
uint8_t value;
struct
{
uint8_t lowbit:2;
uint8_t middlebit:3;
uint8_t highbit:3;
}byte;
}test_data;
说明:可以看出value和byte共用一个字节的内存空间,改变value的值,那么byte的值也就改变了,同样改变byte中的位(lowbit占两位, middlebit占3位,highbit也占3位;)value的值也就改变了;一般情况下,我们要得到value中的高三位的值,需要得到这样(暂定高三位的值为x)x=(value>>5)&0x03,但是使用了位域,就可以直接得到了,省去了这样的一个计算的过程,当然位域的好处不止这些,需要大家灵活运用。
isa结构
我们在之前的init文章中提到将开辟的内存和对象绑定在一块使用了
obj->initInstanceIsa(cls, hasCxxDtor);
initIsa(cls, true, hasCxxDtor);
inline void
objc_object::initIsa(Class cls, bool nonpointer, bool hasCxxDtor)
{
ASSERT(!isTaggedPointer());
if (!nonpointer) {
isa = isa_t((uintptr_t)cls);
} else {
ASSERT(!DisableNonpointerIsa);
ASSERT(!cls->instancesRequireRawIsa());
isa_t newisa(0);
#if SUPPORT_INDEXED_ISA
ASSERT(cls->classArrayIndex() > 0);
newisa.bits = ISA_INDEX_MAGIC_VALUE;
// isa.magic is part of ISA_MAGIC_VALUE
// isa.nonpointer is part of ISA_MAGIC_VALUE
newisa.has_cxx_dtor = hasCxxDtor;
newisa.indexcls = (uintptr_t)cls->classArrayIndex();
#else
newisa.bits = ISA_MAGIC_VALUE;
// isa.magic is part of ISA_MAGIC_VALUE
// isa.nonpointer is part of ISA_MAGIC_VALUE
newisa.has_cxx_dtor = hasCxxDtor;
newisa.shiftcls = (uintptr_t)cls >> 3;
#endif
// This write must be performed in a single store in some cases
// (for example when realizing a class because other threads
// may simultaneously try to use the class).
// fixme use atomics here to guarantee single-store and to
// guarantee memory order w.r.t. the class index table
// ...but not too atomic because we don't want to hurt instantiation
isa = newisa;
}
}
在这里创建了isa,我们看看isa导致有什么
union isa_t {
isa_t() { }
isa_t(uintptr_t value) : bits(value) { }
Class cls;
uintptr_t bits;
#if defined(ISA_BITFIELD)
struct {
ISA_BITFIELD; // defined in isa.h
};
#endif
};
# elif __x86_64__
# define ISA_MASK 0x00007ffffffffff8ULL
# define ISA_MAGIC_MASK 0x001f800000000001ULL
# define ISA_MAGIC_VALUE 0x001d800000000001ULL
# define ISA_BITFIELD \
uintptr_t nonpointer : 1; \
uintptr_t has_assoc : 1; \
uintptr_t has_cxx_dtor : 1; \
uintptr_t shiftcls : 44; /*MACH_VM_MAX_ADDRESS 0x7fffffe00000*/ \
uintptr_t magic : 6; \
uintptr_t weakly_referenced : 1; \
uintptr_t deallocating : 1; \
uintptr_t has_sidetable_rc : 1; \
uintptr_t extra_rc : 8
# define RC_ONE (1ULL<<56)
# define RC_HALF (1ULL<<7)
这里就用到了上文所说的联合体位域,我们看下这些属性代表的意义
nonpointer:表示是否对 isa 指针开启指针优化
0:纯isa指针,1:不⽌是类对象地址,isa 中包含了类信息、对象的引⽤计数等
has_assoc:关联对象标志位,0没有,1存在
has_cxx_dtor:该对象是否有 C++ 或者 Objc 的析构器,如果有析构函数,则需要做析构逻辑, 如果没有,则可以更快的释放对象
shiftcls:
存储类指针的值。开启指针优化的情况下,在 arm64 架构中有 33 位⽤来存储类指针。
magic:⽤于调试器判断当前对象是真的对象还是没有初始化的空间
weakly_referenced:志对象是否被指向或者曾经指向⼀个 ARC 的弱变量,
没有弱引⽤的对象可以更快释放。
deallocating:标志对象是否正在释放内存
has_sidetable_rc:当对象引⽤技术⼤于 10 时,则需要借⽤该变量存储进位
extra_rc:当表示该对象的引⽤计数值,实际上是引⽤计数值减 1,
例如,如果对象的引⽤计数为 10,那么 extra_rc 为 9。如果引⽤计数⼤于 10,
则需要使⽤到下⾯的 has_sidetable_rc。
newisa.shiftcls = (uintptr_t)cls >> 3;
cls右移三个位置把clas信息放在shiftcls
现在我们来通过isa来找到class对象,在上文我们可知shiftcls右边有3位,左边20位
位运算.png
这个结果和 & 0x00007ffffffffff8ULL 是一样的,所以ISA_MASK也是方便我们的计算
我们在object_getclass 方法中返回的也是这个
return (Class)(isa.bits & ISA_MASK);