选择排序

2020-09-20  本文已影响0人  HOLLE_karry

一、算法描述

1.首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置
2.再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。
3.重复第二步,直到所有元素均排序完毕。

二、算法性能

时间复杂度

选择排序的交换操作介于 0 和 (n - 1)次之间。选择排序的比较操作为 n (n - 1) / 2 次之间。选择排序的赋值操作介于 0 和 3 (n - 1) 次之间。比较次数O(n^2),比较次数与关键字的初始状态无关,总的比较次数N=(n-1)+(n-2)+...+1=n*(n-1)/2。交换次数O(n),最好情况是,已经有序,交换0次;最坏情况交换n-1次,逆序交换n/2次。交换次数比冒泡排序少多了,由于交换所需CPU时间比比较所需的CPU时间多,n值较小时,选择排序比冒泡排序快

算法稳定性

选择排序是给每个位置选择当前元素最小的,比如给第一个位置选择最小的,在剩余元素里面给第二个元素选择第二小的,依次类推,直到第n-1个元素,第n个元素不用选择了,因为只剩下它一个最大的元素了。那么,在一趟选择,如果一个元素比当前元素小,而该小的元素又出现在一个和当前元素相等的元素后面,那么交换后稳定性就被破坏了。举个例子,序列5 8 5 2 9,我们知道第一遍选择第1个元素5会和2交换,那么原序列中两个5的相对前后顺序就被破坏了,所以选择排序是一个不稳定的排序算法

三、具体代码

public class SelectionSort implements IArraySort {

    @Override
    public int[] sort(int[] sourceArray) throws Exception {
        int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);
        // 总共要经过 N-1 轮比较
        for (int i = 0; i < arr.length - 1; i++) {
            int min = i;
            // 每轮需要比较的次数 N-i
            for (int j = i + 1; j < arr.length; j++) {
                if (arr[j] < arr[min]) {
                    // 记录目前能找到的最小值元素的下标
                    min = j;
                }
            }

            // 将找到的最小值和i位置所在的值进行交换
            if (i != min) {
                int tmp = arr[i];
                arr[i] = arr[min];
                arr[min] = tmp;
            }
        }
        return arr;
    }
}
上一篇下一篇

猜你喜欢

热点阅读