java多线程概念

2020-07-24  本文已影响0人  MrShen_1eaa

并行与并发

总结:

套用知乎上一个形象比喻如下:

并发的关键是你有处理多个任务的能力,不一定同时。并行的关键是你有同时处理多个任务的能力,并行与并发之间的关键点就是是否能【同时】。

进程和线程

线程状态

线程运行状态

CPU缓存

CPU缓存的出现主要是为了解决CPU运算速度与内存读写速度之间的矛盾。因为CPU的运算速度要比内存的读写速度快得多。

一次主存的访问,可能需要几十个到几百个时钟周期。
一次一级缓存的访问,可能只需要几个时钟周期。
一次二级缓存的访问,可能需要几十个时钟周期。

针对速度上的差异,CPU可能需要花费很长时间去等待数据到来或者把数据写入内存。基于此,现代CPU多数读取数据都不会直接访问内存,而是从缓存中去读取,CPU缓存是位于CPU与内存之间临时存储器,它的容量较小但读写速度却比内存快得多,CPU优先从缓存中去读取,读取不到再到内存中读取。缓存同样有优先级,优先从一级缓存中读取,再到二级缓存中读取,再到三级缓存中。一级缓存、二级缓存、三级缓存它们的读写速度依次递减,价格也依次递减,因此存储容量依次递增。注意缓存中存放的只是内存中的一小部分数据,这部分数据是短时间内CPU即将访问的。

按照读写速度以及与CPU紧密结合程度,CPU缓存可分为以下三种

为了解决上述场景的问题,就有了如下缓存一致性协议:

缓存一致性协议

每个CPU都有一级缓存,但是我们却没有办法保证每个CPU一级缓存的数据都是一样的。所以,同一个应用程序,CPU进行切换的时候,切换前与切换后的数据可能会不一样。那么怎么保证CPU缓存数据是一致,就是CPU缓存一致性问题。

总线锁

一种处理一致性问题的办法是使用总线锁(Bus Locking)。当CPU对其缓存的数据进行操作时,往总线中发送一个Lock信号,这个时候所有CPU收到这个信号之后,就不操作自己缓存中对应的数据了。当操作结束,释放锁之后,所有的CPU就会去内存中获取数据。但是用总线锁的方式,会导致CPU性能下降。因此出现了如下维护缓存一致性的方式,MESI。

MESI

MESI是保持一致性协议。它的方法是在CPU缓存中保存一个标记位,这个标记位有四种方式。

在 MESI 协议中,每个缓存的缓存控制器不仅知道自己的 读写操作,而且也监听(snoop)其它 Cache 的读写操作。
对于 MESI 协议,从 CPU 读写角度来说会遵循以下原则:

CPU 读请求:缓存处于 M、E、S 状态都可以被读取,I 状 态 CPU 只能从主存中读取数据。
CPU 写请求:缓存处于 M、E 状态才可以被写。对于 S 状 态的写,需要将其他 CPU 中缓存行置为无效才可写 使用总线锁和缓存锁机制之后,CPU 对于内存的操作大概 可以抽象成下面这样的结构。从而达到缓存一致性效果。


缓存一致性抽象图

为了避免阻塞带来的资源浪费。在 cpu 中引入 了 Store Bufferes(存储缓存) 和 Invalidate Queue(无效队列)。
CPU0 写入共享数据时,直接把数据写入到 store bufferes 中,同时发送 invalidate 消息,然后继续去处理其他指令。
当收到其他所有 CPU 发送了 invalidate ACK消息时,再将 store bufferes 中的数据数据存储至 cache 中。最后再从本地Cache同步到主内存。


缓存锁解决总线锁的逻辑
但是 cpu 中引入 Store Bufferes 优化存在两个问题:
CPU 层面的内存屏障
JMM

并发编程导致可见性问题的根本原因是缓存及重排序。 而JMM 实际上就是提供了合理的禁用缓存以及禁止重排序的方法。所以它最核心的价值在于解决可见性和有序性。


JMM模型图

JMM 抽象模型分为主内存、工作内存(本地内存);

JMM 是如何解决可见性有序性问题的?

JMM 提供了一些禁用缓存以及进制重排序的方法,来解决可见性和有序性问题。这些方法大家都很熟悉: volatile、synchronized、final;

JMM 如何解决顺序一致性问题?
JMM 层面的内存屏障

1、为什么会有内存屏障?

2、内存屏障是什么?
硬件层的内存屏障分为两种:Load Barrier (读屏障) 和 Store Barrier(写屏障)及 Full Barrier(全屏障) 是读屏障和写屏障的合集。

3、java内存屏障?
java的内存屏障通常所谓的四种即LoadLoad(LL),StoreStore(SS),LoadStore(LS),StoreLoad(SL)实际上也是上述两种的组合,完成一系列的屏障和数据同步功能。

4、volatile语义中的内存屏障?
volatile的内存屏障策略非常严格保守,非常悲观且毫无安全感的心态:

由于内存屏障的作用,避免了volatile变量和其它指令重排序、线程之间实现了通信,使得volatile表现出了轻量锁的特性。

5、final语义中的内存屏障?
对于final域,编译器和CPU会遵循两个排序规则:

1、新建对象过程中,构造体中对final域的初始化写入和这个对象赋值给其他引用变量,这两个操作不能重排序;
2、初次读包含final域的对象引用和读取这个final域,这两个操作不能重排序;(意思就是先赋值引用,再调用final值)
总之上面规则的意思可以这样理解:必需保证一个对象的所有final域被写入完毕后才能引用和读取。这也是内存屏障的起的作用:
1、写final域:在编译器写final域完毕,构造体结束之前,会插入一个StoreStore屏障,保证前面的对final写入对其他线程/CPU可见,并阻止重排序。
2、读final域:在上述规则2中,两步操作不能重排序的机理就是在读final域前插入了LoadLoad屏障。
3、X86处理器中,由于CPU不会对写-写操作进行重排序,所以StoreStore屏障会被省略;而X86也不会对逻辑上有先后依赖关系的操作进行重排序,所以LoadLoad也会变省略。

HappenBefore原则
  HappenBefore解决的是可见性问题
  定义:前一个操作的结果对于后续操作是可见的。在 JMM 中,如果一个操作执行的结果需要对另一个操作可见,那么这两个操作必须要存在 happens-before 关系。这两个操作可以是同一个线程,也可以是不同的线程。

JMM 中有哪些方法建立 happen-before 规则:

上一篇下一篇

猜你喜欢

热点阅读