借用百度智能云完成<驾驶行为识别>视频检测【python】
2022-02-10 本文已影响0人
小小杨树
9QS`]NUYQ5QX$ZSK1N`1OWY.png
一.API Key和Secret Key准备工作
1.1在百度智能云平台上注册账号,
1.2进入百度智能云管理中心:
1.3.汇集信息
驾驶行为分析
API Key: 【官网获取的AK】
Secret Key: 【官网获取的SK】
host = 'https://aip.baidubce.com/oauth/2.0/token?grant_type=client_credentials&client_id=【官网获取的AK】&client_secret=【官网获取的SK】'
二.检测图像中的驾驶行为
2.1根据官网给的样例,更改自己的ak和sk,如下所示
def detect_image(frame):
request_url = "https://aip.baidubce.com/rest/2.0/image-classify/v1/driver_behavior"
image = cv2.imencode('.jpg', frame)[1]
img = str(base64.b64encode(image))[2:-1]
params = {"image": img}
host = 'https://aip.baidubce.com/oauth/2.0/token?grant_type=client_credentials&client_id=【官网获取的AK】&client_secret=【官网获取的SK】'
response_host = requests.get(host)
access_token = []
useriddatas = json.loads(response_host.text)
access_token.append(str(useriddatas["access_token"]))
access = (''.join(access_token))
access_token = access
request_url = request_url + "?access_token=" + access_token
headers = {'content-type': 'application/x-www-form-urlencoded'}
response = requests.post(request_url, data=params, headers=headers)
data = response.json()
datas = str(data)
if len(datas) > 200: #防止检测过快无法触及并发,这里我是使用的免费的次数
find_behavior(data)
else:
pass
2.2从response.json()中解析行为:
def find_behavior(data):
'''
smoke //吸烟,
cellphone //打手机 ,
not_buckling_up // 未系安全带,
not_facing_front // 视角未看前方,
yawning // 打哈欠,
eyes_closed // 闭眼,
head_lowered // 低头
'''
# print(data)
data_smoke = data['person_info'][0]['attributes']['smoke']['score']
data_cellphone = data['person_info'][0]['attributes']['cellphone']['score']
data_not_buckling_up = data['person_info'][0]['attributes']['not_buckling_up']['score']
data_not_facing_front = data['person_info'][0]['attributes']['not_facing_front']['score']
data_yawning = data['person_info'][0]['attributes']['yawning']['score']
data_eyes_closed = data['person_info'][0]['attributes']['eyes_closed']['score']
data_head_lowered = data['person_info'][0]['attributes']['head_lowered']['score']
All_behavior = [data_smoke,
data_cellphone,
data_not_buckling_up,
data_not_facing_front,
data_yawning,
data_eyes_closed,
data_head_lowered]
All_behavior = np.array(All_behavior) # 转格式
Danger_behavior = np.sum(All_behavior >= 0.4) # 存在危险驾驶行为(该行为概率大于0.4)的个数
if Danger_behavior > 0:
"""
from pygame import mixer #控制音频流模块
mixer.init() #初始化混音器模块
mixer.music.load('./存在危险驾驶行为.mp3') #载入待播放音乐文件 假定为2秒
mixer.music.play() #开始播放音乐流
sleep(2) #休眠2秒供播放使用
mixer.music.stop() # 停止播放
"""
print("存在危险驾驶行为")
else:
print("安全驾驶中")
2.3.将图像检测怼到视频中
if __name__ == "__main__":
capture = cv2.VideoCapture(0)
fps = 0.0
while (True):
t1 = time.time()
# 读取某一帧
ref, frame = capture.read()
# 格式转变,BGRtoRGB
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# 转变成Image
# 进行检测
detect_image(frame)
# time.sleep(0.2)
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
# fps = int(round(capture.get(cv2.CAP_PROP_FPS)))
fps = (fps + (1. / (time.time() - t1))) / 2
frame = cv2.putText(frame, "fps= %.2f" % (fps), (0, 40), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
cv2.imshow("video", frame)
c = cv2.waitKey(1) & 0xff
if c == 27:
capture.release()
break
capture.release()
cv2.destroyAllWindows()
三.demo代码:
# encoding:utf-8
import json
import time
import numpy as np
import requests
import base64
import cv2
'''
驾驶行为分析
API Key: USIybtKpK5CB2B1o6RSyYYz1
Secret Key: CFSlR51sTQnocifu8mmrn8sv7XNb5vwS
host = 'https://aip.baidubce.com/oauth/2.0/token?grant_type=client_credentials&client_id=【官网获取的AK】&client_secret=【官网获取的SK】'
'''
def find_behavior(data):
'''
smoke //吸烟,
cellphone //打手机 ,
not_buckling_up // 未系安全带,
not_facing_front // 视角未看前方,
yawning // 打哈欠,
eyes_closed // 闭眼,
head_lowered // 低头
'''
# print(data)
data_smoke = data['person_info'][0]['attributes']['smoke']['score']
data_cellphone = data['person_info'][0]['attributes']['cellphone']['score']
data_not_buckling_up = data['person_info'][0]['attributes']['not_buckling_up']['score']
data_not_facing_front = data['person_info'][0]['attributes']['not_facing_front']['score']
data_yawning = data['person_info'][0]['attributes']['yawning']['score']
data_eyes_closed = data['person_info'][0]['attributes']['eyes_closed']['score']
data_head_lowered = data['person_info'][0]['attributes']['head_lowered']['score']
All_behavior = [data_smoke,
data_cellphone,
data_not_buckling_up,
data_not_facing_front,
data_yawning,
data_eyes_closed,
data_head_lowered]
All_behavior = np.array(All_behavior) # 转格式
Danger_behavior = np.sum(All_behavior >= 0.4) # 存在危险驾驶行为(该行为概率大于0.4)的个数
if Danger_behavior > 0:
"""
from pygame import mixer #控制音频流模块
mixer.init() #初始化混音器模块
mixer.music.load('./存在危险驾驶行为.mp3') #载入待播放音乐文件 假定为2秒
mixer.music.play() #开始播放音乐流
sleep(2) #休眠2秒供播放使用
mixer.music.stop() # 停止播放
"""
print("存在危险驾驶行为")
else:
print("安全驾驶中")
def detect_image(frame):
request_url = "https://aip.baidubce.com/rest/2.0/image-classify/v1/driver_behavior"
image = cv2.imencode('.jpg', frame)[1]
img = str(base64.b64encode(image))[2:-1]
params = {"image": img}
host ='https://aip.baidubce.com/oauth/2.0/token?grant_type=client_credentials&client_id=【官网获取的AK】&client_secret=【官网获取的SK】'
response_host = requests.get(host)
access_token = []
useriddatas = json.loads(response_host.text)
access_token.append(str(useriddatas["access_token"]))
access = (''.join(access_token))
access_token = access
request_url = request_url + "?access_token=" + access_token
headers = {'content-type': 'application/x-www-form-urlencoded'}
response = requests.post(request_url, data=params, headers=headers)
data = response.json()
datas = str(data)
if len(datas) > 200:
find_behavior(data)
else:
pass
if __name__ == "__main__":
capture = cv2.VideoCapture(0)
fps = 0.0
while (True):
t1 = time.time()
# 读取某一帧
ref, frame = capture.read()
# 格式转变,BGRtoRGB
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# 转变成Image
# 进行检测
detect_image(frame)
# time.sleep(0.2)
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
# fps = int(round(capture.get(cv2.CAP_PROP_FPS)))
fps = (fps + (1. / (time.time() - t1))) / 2
frame = cv2.putText(frame, "fps= %.2f" % (fps), (0, 40), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
cv2.imshow("video", frame)
c = cv2.waitKey(1) & 0xff
if c == 27:
capture.release()
break
capture.release()
cv2.destroyAllWindows()