信息学竞赛题解(IO题解)

BZOJ-1146: [CTSC2008]网络管理Network

2018-10-16  本文已影响0人  AmadeusChan

题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1146

极端恶心的一道模版题。

解法一:

这道题很容易就可以联想到主席树,但是主席树维护的是序列,那么就直接做成DFS序列,每个点拆成一个进点(in[v])和出点(out[v]),然后对于每个进点+w[i],每个出点-w[i],又要支持修改,那么就树状数组套主席树,然后直接在主席树上二分,时空复杂度均为O(n log^2 n),然后我就很兴奋地敲了200+代码,结果一交上去果断MLE,然后才发现自己写的主席树占用空间都差不多500M了,果断放弃。(ORZ此法过的大神)

解法二:

树链剖分+树状数组(线段树)+平衡树+二分查找,复杂度:O(q log^4 n),相当高的复杂度。

解法三:

树链剖分+树状数组(线段树)+主席树,复杂度O(q log^3 n),还算好写,不过我死活空间省不到161M。

解法四:

DFS序+树状数组+平衡树+二分查找,在解法一的基础上把主席树改成BST,然后二分答案,复杂度O(n log^2 n + q log^3 n),个人觉得相当好写。

代码(dfs序+BIT套SBT+二分查找,苦逼的300+行,还慢得要死):

fcfaaf51f3deb48f59752fd3f21f3a292df5789b.jpg.png
#include <cstdio>

#include <algorithm>

#include <cstring>

#include <queue>

 

using namespace std;

 

#define MAXN 80010

#define MAXV 4000010

#define inf 0x7fffffff

#define lowbit(x)((-x)&x)

#define L(t) Node[t].left

#define R(t) Node[t].right

#define K(t) Node[t].key

#define S(t) Node[t].size

#define update(t) S(t)=S(L(t))+S(R(t))+1

 

int w[MAXN],n,m,Query[MAXN][3];

 

//---------------------------------Size_Balanced_Tree_Start------------------------

 

struct node {

    int left,right,key,size;

    node () {

        left=right=key=size=0;

    }

} Node[MAXV];

 

queue<int>Q;

int V=0;

 

void init_sbt() {

    L(0)=R(0)=S(0)=0;

    while (!Q.empty()) Q.pop();

}

 

int New() {

    if (!Q.empty()) {

        int v=Q.front();

        Q.pop();

        L(v)=R(v)=0;

        return v;

    }

    return ++V;

}

 

void Recycle(int t) {

    Q.push(t);

}

 

void left_ratote(int &t) {

    int k=R(t);

    R(t)=L(k); update(t);

    L(k)=t;    update(k);

    t=k;

}

 

void right_ratote(int &t) {

    int k=L(t);

    L(t)=R(k); update(t);

    R(k)=t;    update(k);

    t=k;

}

 

void maintain(int &t) {

    if (S(L(L(t)))>S(R(t))) {

        right_ratote(t);

        maintain(R(t));

        maintain(t);

        return ;

    }

    if (S(R(L(t)))>S(R(t))) {

        left_ratote(L(t));

        right_ratote(t);

        maintain(L(t)),maintain(R(t));

        maintain(t);

        return ;

    }

    if (S(R(R(t)))>S(L(t))) {

        left_ratote(t);

        maintain(L(t));

        maintain(t);

        return ;

    }

    if (S(L(R(t)))>S(L(t))) {

        right_ratote(R(t));

        left_ratote(t);

        maintain(L(t)),maintain(R(t));

        maintain(t);

        return ;

    }

}

 

void Insert(int k,int &t) {

    if (!t) {

        t=New();

        S(t)=1,K(t)=k;

        return ;

    }

    S(t)++;

    if (k<K(t)) Insert(k,L(t)); else Insert(k,R(t));

    maintain(t);

}

 

void Delete(int k,int &t) {

    if (K(t)==k) {

        if (!L(t)) {

            int v=t;

            t=R(t),Recycle(v);

            return ;

        } else {

            if (!R(t)) {

                int v=t;

                t=L(t),Recycle(v);

                return ;

            } else {

                right_ratote(t);

                Delete(k,R(t));

            }

        }

    } else if (k<K(t)) Delete(k,L(t)); else Delete(k,R(t));

    update(t);

    maintain(t);

}

 

int Rank(int k,int t) {

    if (!t) return 0;

    if (k<K(t)) return S(R(t))+1+Rank(k,L(t)); else return Rank(k,R(t));

}

 

//---------------------------------Size_Balanced_Tree_End--------------------------

 

//-------------------------------Tree_Start----------------------------------------

 

struct edge {

    int t;

    edge *next;

    edge () {

        next=NULL;

    }

} *head[MAXN];

 

void Tree_init() {

    memset(head,0,sizeof(head));

}

 

void Add(int s,int t) {

    edge *p=new(edge);

    p->t=t,p->next=head[s];

    head[s]=p;

}

 

void AddEdge(int s,int t) {

    Add(s,t),Add(t,s);

}

 

int In[MAXN],Out[MAXN],Index=0;

bool f[MAXN];

 

void dfs(int v) {

    In[v]=++Index,f[v]=false;

    for (edge *p=head[v];p;p=p->next) if (f[p->t]) dfs(p->t);

    Out[v]=++Index;

}

 

//-------------------------------Tree_End------------------------------------------

 

//-------------------------Binary_Index_Tree_Start---------------------------------

 

int bit[MAXN*2][2];

 

void bit_insert(int x,int y,int t) {

    for (;x<=2*n;x+=lowbit(x)) Insert(y,bit[x][t]);

}

 

void bit_delete(int x,int y,int t) {

    for (;x<=2*n;x+=lowbit(x)) Delete(y,bit[x][t]);

}

 

void bit_init() {

    memset(bit,0,sizeof(bit));

    for (int i=0;i++<n;) bit_insert(In[i],w[i],0),bit_insert(Out[i],w[i],1);

}

 

int rank_bit(int k,int x) {

    int rec=0;

    for (int i=x;i;i-=lowbit(i)) rec+=Rank(k,bit[i][0]),rec-=Rank(k,bit[i][1]);

    return rec;

}

 

void Change(int v,int k) {

    bit_delete(In[v],w[v],0),bit_delete(Out[v],w[v],1);

    bit_insert(In[v],k,0),bit_insert(Out[v],k,1);

    w[v]=k;

}

 

//-------------------------Binary_Index_Tree_End-----------------------------------

 

//--------------------------Sort_Start---------------------------------------------

 

int b[MAXN*2],c[MAXN*2],N=0,Nn=0;

 

bool cmp(int x,int y) {

    return x>y;

}

 

void Sort() {

    sort(c+1,c+Nn+1,cmp);

    for (int i=0;i++<Nn;) if (i==1||c[i]!=c[i-1]) b[++N]=c[i];

}

 

//--------------------------Sort_End-----------------------------------------------

 

//-------------------------------LCA_Start(Tarjan)---------------------------------

 

struct saver {

    saver *next;

    int t,r;

    saver () {

        next=NULL;

    }

} *fro[MAXN];

 

void lca_insert(int s,int t,int r) {

    saver *p=new(saver);

    p->next=fro[s],p->t=t,p->r=r;

    fro[s]=p;

}

 

int father[MAXN],lca[MAXN];

 

int Find(int x) {

    int i=x,j=x;

    for (;father[i];i=father[i]) ;

    while (father[j]) {

        int k=father[j];

        father[j]=i;

        j=k;

    }

    return i;

}

 

void Tarjan(int v) {

    f[v]=false;

    for (saver *p=fro[v];p;p=p->next) if (!f[p->t]) lca[p->r]=Find(p->t);

    for (edge *p=head[v];p;p=p->next) if (f[p->t]) {

        Tarjan(p->t);

        father[Find(p->t)]=v;

    }

}

 

void Tarjan_lca() {

    memset(fro,0,sizeof(fro));

    memset(father,0,sizeof(father));

    memset(f,true,sizeof(f));

    for (int i=0;i++<m;) if (Query[i][0]) lca_insert(Query[i][1],Query[i][2],i),lca_insert(Query[i][2],Query[i][1],i);

    Tarjan(1);

}

 

//-------------------------------LCA_End-------------------------------------------

 

//------------------------------Main_Function--------------------------------------

 

int rank_path(int v,int u,int LCA,int k) {

    int rec=rank_bit(k,In[v])+rank_bit(k,In[u])-2*rank_bit(k,In[LCA]);

    return rec+(w[LCA]>k?1:0);

}

 

int main() {

    scanf("%d%d",&n,&m);

    c[++Nn]=-inf,c[++Nn]=inf;

    for (int i=0;i++<n;) scanf("%d",&w[i]),c[++Nn]=w[i];

    Tree_init();

    for (int i=0;i++<n-1;) {

        int s,t;

        scanf("%d%d",&s,&t);

        AddEdge(s,t);

    }

    memset(f,true,sizeof(f));

    dfs(1);

    for (int i=0;i++<m;) {

        scanf("%d%d%d",&Query[i][0],&Query[i][1],&Query[i][2]);

        if (!Query[i][0]) c[++Nn]=Query[i][2];

    }

    bit_init(),Sort(),Tarjan_lca();

    for (int i=0;i++<m;) {

        if (!Query[i][0]) Change(Query[i][1],Query[i][2])

            ; else {

                if (rank_path(Query[i][1],Query[i][2],lca[i],-inf)<Query[i][0]) printf("invalid request!\n")

                    ; else {

                        int l=1,r=N;

                        while (r-l>1) {

                            int mid=(l+r)>>1;

                            int sum=rank_path(Query[i][1],Query[i][2],lca[i],b[mid]);

                            if (sum>=Query[i][0]) r=mid; else l=mid;

                        }

                        printf("%d\n",b[l]);

                    }

            }

    }

    return 0;

}


上一篇下一篇

猜你喜欢

热点阅读