棋盘覆盖问题
2018-05-01 本文已影响0人
何大炮
百度百科
这个题要用到分治和递归的技巧:
分治的技巧在于如何划分棋盘,使划分后的子棋盘的大小相同,并且每个子棋盘均包含一个特殊方格,从而将原问题分解为规模较小的棋盘覆盖问题。
Idea: 每次对方块进行田字格划分,然后都取方块中心的四个点,其中一个点所在的大方格里存在特殊方格,于是我们保持不动;剩下三个用L型方块占领。
要注意这里除了递归栈,其他的空间复杂度是O(1)。所以没有额外的申请空间,都是基于原table在操作。
时间复杂度:O(4^n)
# 棋盘覆盖
def form_2d_table(length, x, y):
table= []
for i in range(0, length):
row = []
for j in range(0, length):
row.append('a')
table.append(row)
table[x][y] = 'b'
return table
def divide(table, table_x, table_y, size, x, y):
if size == 1:
return
global L_num
mid = size//2
x_mid = table_x + mid -1
y_mid = table_y + mid -1
if x > x_mid and y > y_mid:
table[x_mid][y_mid] = L_num
table[x_mid+1][y_mid] = L_num
table[x_mid][y_mid+1] = L_num
L_num += 1
divide(table, table_x+mid, table_y + mid, mid, x, y)
divide(table, table_x, table_y, mid, table_x + mid-1, table_y+mid-1)
divide(table, table_x, table_y + mid, mid, table_x+mid-1, table_y+mid)
divide(table, table_x + mid, table_y, mid, table_x+mid, table_y+mid-1)
if x > x_mid and y <= y_mid:
table[x_mid][y_mid] = L_num
table[x_mid][y_mid + 1] = L_num
table[x_mid + 1][y_mid + 1] = L_num
L_num += 1
divide(table, table_x, table_y, mid, table_x+mid-1, table_y+mid-1)
divide(table, table_x, table_y+mid, mid, table_x+mid-1, table_y+mid)
divide(table, table_x + mid, table_y, mid, x, y)
divide(table, table_x+mid, table_y+mid, mid, table_x+mid, table_y+mid)
if x <= x_mid and y > y_mid:
table[x_mid][y_mid] = L_num
table[x_mid + 1][y_mid] = L_num
table[x_mid + 1][y_mid + 1] = L_num
L_num += 1
divide(table, table_x, table_y, mid, table_x + mid - 1, table_y + mid - 1)
divide(table, table_x, table_y + mid, mid, x, y)
divide(table, table_x + mid, table_y, mid, table_x + mid, table_y + mid - 1)
divide(table, table_x + mid, table_y + mid, mid, table_x + mid, table_y + mid)
if x <= x_mid and y <= y_mid:
table[x_mid+1][y_mid+1] = L_num
table[x_mid + 1][y_mid] = L_num
table[x_mid][y_mid + 1] = L_num
L_num += 1
divide(table, table_x, table_y, mid, x, y)
divide(table, table_x, table_y + mid, mid, table_x + mid-1, table_y + mid)
divide(table, table_x + mid, table_y, mid, table_x + mid, table_y + mid-1)
divide(table, table_x + mid, table_y + mid, mid, table_x + mid, table_y + mid)
size = 8
table = form_2d_table(size, 0, 0)
L_num = 0
divide(table, 0, 0, size, 0, 0)
for i in range(size):
row = []
for j in range(size):
row.append(table[i][j])
print(row)