LeetCode - #120 三角形最小路径和
2022-09-13 本文已影响0人
Swift社区
前言
我们社区陆续会将顾毅(Netflix 增长黑客,《iOS 面试之道》作者,ACE 职业健身教练。)的 Swift 算法题题解整理为文字版以方便大家学习与阅读。
LeetCode 算法到目前我们已经更新到 114 期,我们会保持更新时间和进度(周一、周三、周五早上 9:00 发布),每期的内容不多,我们希望大家可以在上班路上阅读,长久积累会有很大提升。
不积跬步,无以至千里;不积小流,无以成江海,Swift社区 伴你前行。如果大家有建议和意见欢迎在文末留言,我们会尽力满足大家的需求。
难度水平:中等
1. 描述
给定一个三角形 triangle
,找出自顶向下的最小路径和。
每一步只能移动到下一行中相邻的结点上。相邻的结点 在这里指的是 下标 与 上一层结点下标 相同或者等于 上一层结点下标 + 1 的两个结点。也就是说,如果正位于当前行的下标 i
,那么下一步可以移动到下一行的下标 i
或 i + 1
。
2. 示例
示例 1
输入:triangle = [[2],[3,4],[6,5,7],[4,1,8,3]]
输出:11
解释:如下面简图所示:
2
3 4
6 5 7
4 1 8 3
自顶向下的最小路径和为 11(即,2 + 3 + 5 + 1 = 11)。
示例 2
输入:triangle = [[-10]]
输出:-10
约束条件:
1 <= triangle.length <= 200
triangle[0].length == 1
triangle[i].length == triangle[i - 1].length + 1
-10^4 <= triangle[i][j] <= 10^4
3. 答案
class Triangle {
func minimumTotal(_ triangle: [[Int]]) -> Int {
guard triangle.count > 0 else {
return 0
}
var dp = triangle.last!
for i in stride(from: triangle.count - 2, through: 0, by: -1) {
for j in 0...i {
dp[j] = min(dp[j], dp[j + 1]) + triangle[i][j]
}
}
return dp[0]
}
}
- 主要思想:动态规划,从下到上。
- 时间复杂度: O(2^n)
- 空间复杂度: O(m)
该算法题解的仓库:LeetCode-Swift
点击前往 LeetCode 练习
关于我们
我们是由 Swift 爱好者共同维护,我们会分享以 Swift 实战、SwiftUI、Swift 基础为核心的技术内容,也整理收集优秀的学习资料。