Stata新命令 parallel: 无需更新硬件的平行计算
Source: Github - gvegayon/parallel
用途: 在 Booststrap, 蒙特卡洛模拟分析等耗时计算中,速度尤为重要。对于没钱买大型计算机的我等屌丝而言,parallel
命令提供了一种省钱但却实用的处理方式。

PARALLEL: Stata module for parallel computing
Parallel lets you run Stata faster, sometimes faster than MP itself. By organizing your job in several Stata instances, parallel allows you to work with out-of-the-box parallel computing. Using the the parallel
prefix, you can get faster simulations, bootstrapping, reshaping big data, etc. without having to know a thing about parallel computing. With no need of having Stata/MP installed on your computer, parallel has showed to dramatically speedup computations up to two, four, or more times depending on how many processors your computer has.
See also the HTML version of the program help file.
Stata 2017 conference presentation: https://github.com/gvegayon/parallel/blob/master/talks/20170727_stata_conference/20170727_stata_conference_handout.pdf
SSC at Boston College: http://ideas.repec.org/c/boc/bocode/s457527.html (though the SSC version is a bit out-of-date, see below)
Installation
If you have a previous installation of parallel
installed from a different source (SSC, specific folder, specific URL) you should uninstall that first. Once installed it is suggested to restart Stata.
SSC
For accessing SSC version of parallel
. ssc install parallel, replace
. mata mata mlib index
Development Version (Latest/Master)
For accessing the latest development version of parallel (from here) using Stata version >=13
. net install parallel, from(https://raw.github.com/gvegayon/parallel/master/) replace
. mata mata mlib index
For Stata version <13, download as zip, unzip, and then replace the above net install
with
. net install parallel, from(full_local_path_to_files) replace
Development Version (Other Releases)
Access other development releases via the Releases Page. You can use the release tag to install over the internet. For example,
. net install parallel, from(https://raw.github.com/gvegayon/parallel/v1.15.8.19/) replace
. mata mata mlib index
Or you can download the release and install locally (for Stata <13).
Minimal examples
The following minimal examples have been written to introduce how to use the module. Please notice that the only examples actually designed to show potential speed gains are parfor and bootstrap.
The examples have been executed on a Dell Vostro 3300 notebook running Ubuntu 14.04 with an Intel Core i5 CPU M 560 (2 physical cores) with 8Gb of RAM, using Stata/IC 12.1 for Unix (Linux 64-bit x86-64).
For more examples and details please refer to the module's help file or the wiki Gallery page.
Simple parallelization of egen
When conducted over groups, parallelizing egen
can be useful. In the following example we show how to use parallel
with by: egen
.
. parallel setclusters 2, f
N Clusters: 2
Stata dir: /usr/local/stata13/stata
. sysuse auto
(1978 Automobile Data)
. parallel, by(foreign): egen maxp = max(price)
-------------------------------------------------------------------------------
Parallel Computing with Stata
Clusters : 2
pll_id : m61jt2abc1
Running at : /home/vegayon/Dropbox/repos/parallel
Randtype : datetime
Waiting for the clusters to finish...
cluster 0001 has exited without error...
cluster 0002 has exited without error...
-------------------------------------------------------------------------------
Enter -parallel printlog #- to checkout logfiles.
-------------------------------------------------------------------------------
. tab maxp
maxp | Freq. Percent Cum.
------------+-----------------------------------
12990 | 22 29.73 29.73
15906 | 52 70.27 100.00
------------+-----------------------------------
Total | 74 100.00
Which is the ``parallel'' way to do:
. sysuse auto
(1978 Automobile Data)
. bysort foreign: egen maxp = max(price)
. tab maxp
maxp | Freq. Percent Cum.
------------+-----------------------------------
12990 | 22 29.73 29.73
15906 | 52 70.27 100.00
------------+-----------------------------------
Total | 74 100.00
Bootstrapping
In this example we'll evaluate a regression model using bootstrapping which, together with simulations, is one of the best ways to use parallel
. sysuse auto, clear
(1978 Automobile Data)
. parallel setclusters 4, f
N Clusters: 4
Stata dir: /usr/local/stata13/stata
. timer on 1
. parallel bs, reps(5000): reg price c.weig##c.weigh foreign rep
-------------------------------------------------------------------------------
Parallel Computing with Stata
Clusters : 4
pll_id : m61jt2abc1
Running at : /home/vegayon/Dropbox/repos/parallel
Randtype : datetime
Waiting for the clusters to finish...
cluster 0001 has exited without error...
cluster 0002 has exited without error...
cluster 0003 has exited without error...
cluster 0004 has exited without error...
-------------------------------------------------------------------------------
Enter -parallel printlog #- to checkout logfiles.
-------------------------------------------------------------------------------
parallel bootstrapping Number of obs = 69
Replications = 5000
command: regress price c.weig##c.weigh foreign rep
------------------------------------------------------------------------------
| Observed Bootstrap Normal-based
| Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
weight | -4.317581 3.033419 -1.42 0.155 -10.26297 1.627811
|
c.weight#|
c.weight | .0012192 .0004827 2.53 0.012 .0002732 .0021653
|
foreign | 3155.969 890.4385 3.54 0.000 1410.742 4901.197
rep78 | -30.11387 327.7725 -0.09 0.927 -672.5361 612.3084
_cons | 6415.187 5047.099 1.27 0.204 -3476.945 16307.32
------------------------------------------------------------------------------
. timer off 1
. timer list
1: 10.59 / 1 = 10.5930
97: 0.07 / 2 = 0.0340
98: 0.00 / 1 = 0.0030
99: 10.52 / 1 = 10.5190
Which is the ``parallel way'' to do:
. sysuse auto, clear
(1978 Automobile Data)
. timer on 2
. bs, reps(5000) nodots: reg price c.weig##c.weigh foreign rep
Linear regression Number of obs = 69
Replications = 5000
Wald chi2(4) = 51.13
Prob > chi2 = 0.0000
R-squared = 0.5622
Adj R-squared = 0.5348
Root MSE = 1986.4039
------------------------------------------------------------------------------
| Observed Bootstrap Normal-based
price | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
weight | -4.317581 3.110807 -1.39 0.165 -10.41465 1.779489
|
c.weight#|
c.weight | .0012192 .0004951 2.46 0.014 .0002489 .0021896
|
foreign | 3155.969 863.9629 3.65 0.000 1462.633 4849.305
rep78 | -30.11387 323.6419 -0.09 0.926 -664.4404 604.2127
_cons | 6415.187 5162.58 1.24 0.214 -3703.285 16533.66
------------------------------------------------------------------------------
. timer off 2
. timer list
2: 17.78 / 1 = 17.7810
Simulation
From the simulate
stata command:
. parallel setclusters 2, f
N Clusters: 2
Stata dir: /usr/local/stata13/stata
. program define lnsim, rclass
1\. version 12.1
2\. syntax [, obs(integer 1) mu(real 0) sigma(real 1) ]
3\. drop _all
4\. set obs `obs'
5\. tempvar z
6\. gen `z' = exp(rnormal(`mu',`sigma'))
7\. summarize `z'
8\. return scalar mean = r(mean)
9\. return scalar Var = r(Var)
10\. end
. parallel sim, expr(mean=r(mean) var=r(Var)) reps(10000): lnsim, obs(100)
Warning: No data loaded.
-------------------------------------------------------------------------------
> -
Exporting the following program(s): lnsim
lnsim, rclass:
1\. version 12.1
2\. syntax [, obs(integer 1) mu(real 0) sigma(real 1) ]
3\. drop _all
4\. set obs `obs'
5\. tempvar z
6\. gen `z' = exp(rnormal(`mu',`sigma'))
7\. summarize `z'
8\. return scalar mean = r(mean)
9\. return scalar Var = r(Var)
-------------------------------------------------------------------------------
> -
-------------------------------------------------------------------------------
Parallel Computing with Stata
Clusters : 2
pll_id : 93mwp9vps1
Running at : /home/vegayon/Dropbox/repos/parallel
Randtype : datetime
Waiting for the clusters to finish...
cluster 0001 has exited without error...
cluster 0002 has exited without error...
-------------------------------------------------------------------------------
Enter -parallel printlog #- to checkout logfiles.
-------------------------------------------------------------------------------
.
. summ
Variable | Obs Mean Std. Dev. Min Max
-------------+--------------------------------------------------------
mean | 10000 1.648843 .2165041 1.021977 2.907977
var | 10000 4.650656 4.218584 .6159253 133.9232
which is the parallel way to do
. program define lnsim, rclass
1\. version 12.1
2\. syntax [, obs(integer 1) mu(real 0) sigma(real 1) ]
3\. drop _all
4\. set obs `obs'
5\. tempvar z
6\. gen `z' = exp(rnormal(`mu',`sigma'))
7\. summarize `z'
8\. return scalar mean = r(mean)
9\. return scalar Var = r(Var)
10\. end
. simulate mean=r(mean) var=r(Var), reps(10000) nodots: lnsim, obs(100)
command: lnsim, obs(100)
mean: r(mean)
var: r(V.
. summ
Variable | Obs Mean Std. Dev. Min Max
-------------+--------------------------------------------------------
mean | 10000 1.644006 .2133008 1.061809 2.991108
var | 10000 4.568202 3.984818 .6348574 110.893
parfor
In this example we create a short program (parfor
) which is intended to work as a parfor
program, this is, looping through 1/N in a parallel fashion
. // Cleaning working space
. clear all
. timer clear
.
. // Set up
. set seed 123
. local n = 5e6
. set obs `n'
obs was 0, now 5000000
. gen x = runiform()
. gen y_pll = .
(5000000 missing values generated)
. clonevar y_ser = y_pll
(5000000 missing values generated)
.
. // Loop replacement function
. prog def parfor
1\. args var
2\. forval i=1/`=_N' {
3\. qui replace `var' = sqrt(x) in `i'
4\. }
5\. end
.
. // Running the algorithm in parallel fashion
. timer on 1
. parallel setclusters 4, f
N Clusters: 4
Stata dir: /usr/local/stata13/stata
. parallel, prog(parfor): parfor y_pll
-------------------------------------------------------------------------------
> -
Exporting the following program(s): parfor
parfor:
1\. args var
2\. forval i=1/`=_N' {
3\. qui replace `var' = sqrt(x) in `i'
4\. }
-------------------------------------------------------------------------------
> -
-------------------------------------------------------------------------------
Parallel Computing with Stata
Clusters : 4
pll_id : wrusvgqb91
Running at : /home/vegayon/Dropbox/repos/parallel
Randtype : datetime
Waiting for the clusters to finish...
cluster 0001 has exited without error...
cluster 0002 has exited without error...
cluster 0003 has exited without error...
cluster 0004 has exited without error...
-------------------------------------------------------------------------------
Enter -parallel printlog #- to checkout logfiles.
-------------------------------------------------------------------------------
. timer off 1
.
. // Running the algorithm in a serial way
. timer on 2
. parfor y_ser
. timer off 2
.
. // Is there any difference?
. list in 1/10
+--------------------------------+
| x y_pll y_ser |
|--------------------------------|
1\. | .912044 .9550099 .9550099 |
2\. | .0075452 .0868631 .0868631 |
3\. | .2808588 .5299612 .5299612 |
4\. | .4602787 .6784384 .6784384 |
5\. | .5601059 .7484022 .7484022 |
|--------------------------------|
6\. | .6731906 .820482 .820482 |
7\. | .6177611 .7859778 .7859778 |
8\. | .8656877 .9304234 .9304234 |
9\. | 9.57e-06 .0030943 .0030943 |
10\. | .4090917 .6396028 .6396028 |
+--------------------------------+
. gen diff = y_pll != y_ser
. tab diff
diff | Freq. Percent Cum.
------------+-----------------------------------
0 | 5,000,000 100.00 100.00
------------+-----------------------------------
Total | 5,000,000 100.00
.
. // Comparing time
. timer list
1: 8.93 / 1 = 8.9260
2: 16.06 / 1 = 16.0580
97: 0.42 / 1 = 0.4240
98: 0.32 / 1 = 0.3150
99: 8.17 / 1 = 8.1740
. di "Parallel is `=round(r(t2)/r(t1),.1)' times faster"
Parallel is 1.8 times faster
.
Authors
George G. Vega [aut,cre] g.vegayon %at% gmail
Brian Quistorff [aut] Brian.Quistorff %at% microsoft
关于我们
- 【Stata 连享会(公众号:StataChina)】由中山大学连玉君老师团队创办,旨在定期与大家分享 Stata 应用的各种经验和技巧。
- 公众号推文同步发布于 【简书-Stata连享会】 和 【知乎-连玉君Stata专栏】。可以在简书和知乎中搜索关键词
Stata
或Stata连享会
后关注我们。 - 点击推文底部【阅读原文】可以查看推文中的链接并下载相关资料。
联系我们
-
欢迎赐稿: 欢迎将您的文章或笔记投稿至
Stata连享会(公众号: StataChina)
,我们会保留您的署名;录用稿件达五篇
以上,即可免费获得 Stata 现场培训 (初级或高级选其一) 资格。 - 意见和资料: 欢迎您的宝贵意见,您也可以来信索取推文中提及的程序和数据。
- 招募英才: 欢迎加入我们的团队,一起学习 Stata。合作编辑或撰写稿件五篇以上,即可免费获得 Stata 现场培训 (初级或高级选其一) 资格。
- 联系邮件: StataChina@163.com
往期精彩推文
