elasticsearch玩转大数据Java学习笔记

十九、Elasticsearch基于slop参数实现近似匹配

2017-07-17  本文已影响64人  编程界的小学生

1、基本语法

GET forum/article/_search
{
  "query": {
    "match_phrase": {
      "title": {
        "query": "java spark",
        "slop" : 1
      }
    }
  }
}

2、slop的含义

query string,搜索文本中的几个term,要经过几次移动才能与一个document匹配,这个移动的次数,就是slop

3、slop举例

一个query string经过几次移动之后可以匹配到一个document,然后设置slop

doc:hello world, java is very good, spark is also very good.

用match phrase去搜索java spark,是搜不到的

如果我们指定了slop,那么久允许java spark进行移动,来尝试与doc进行匹配。

java is very good spark is
java spark
java --》 spark
java --》 --》 spark
java --》 --》 --》 spark

从表格中可以发现,我第一次移动了1位,spark到了very的位置,移动了三次后,恰巧到了对应的spark位置。所以这里slop就是3。因为java spark这个短语,spark移动了3次,就可以跟一个doc匹配上了。

slop的含义,不仅仅是说一个query string terms移动几次,跟一个doc匹配上,一个query string terms,最多可以移动几次去尝试跟一个doc匹配上。这里slop设置大于等于3就ok。

直接match_phrase搜索肯定是搜不到了,那么怎么才能搜到呢?

GET /forum/article/_search
{
    "query": {
        "match_phrase": {
            "title": {
                "query": "java spark",
                "slop":  3
            }
        }
    }
}

指定slop为大于等于3的数字就行了。原因我们已经在表格中体现了。

4、slop搜索下,关键词离得越近,relevance score分数就越高

GET /forum/article/_search
{
  "query": {
    "match_phrase": {
      "content": {
        "query": "java best",
        "slop": 15
      }
    }
  }
}

结果:

{
  "took": 3,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "failed": 0
  },
  "hits": {
    "total": 2,
    "max_score": 0.65380025,
    "hits": [
      {
        "_index": "forum",
        "_type": "article",
        "_id": "2",
        "_score": 0.65380025,
        "_source": {
          "articleID": "KDKE-B-9947-#kL5",
          "userID": 1,
          "hidden": false,
          "postDate": "2017-01-02",
          "tag": [
            "java"
          ],
          "tag_cnt": 1,
          "view_cnt": 50,
          "title": "this is java blog",
          "content": "i think java is the best programming language",
          "sub_title": "learned a lot of course",
          "author_first_name": "Smith",
          "author_last_name": "Williams",
          "new_author_last_name": "Williams",
          "new_author_first_name": "Smith"
        }
      },
      {
        "_index": "forum",
        "_type": "article",
        "_id": "5",
        "_score": 0.07111243,
        "_source": {
          "articleID": "DHJK-B-1395-#Ky5",
          "userID": 3,
          "hidden": false,
          "postDate": "2017-03-01",
          "tag": [
            "elasticsearch"
          ],
          "tag_cnt": 1,
          "view_cnt": 10,
          "title": "this is spark blog",
          "content": "spark is best big data solution based on scala ,an programming language similar to java spark",
          "sub_title": "haha, hello world",
          "author_first_name": "Tonny",
          "author_last_name": "Peter Smith",
          "new_author_last_name": "Peter Smith",
          "new_author_first_name": "Tonny"
        }
      }
    ]
  }
}

若有兴趣,欢迎来加入群,【Java初学者学习交流群】:458430385,此群有Java开发人员、UI设计人员和前端工程师。有问必答,共同探讨学习,一起进步!
欢迎关注我的微信公众号【Java码农社区】,会定时推送各种干货:


qrcode_for_gh_577b64e73701_258.jpg
上一篇下一篇

猜你喜欢

热点阅读