20211012隐函数求导公式

2021-10-12  本文已影响0人  MowenPan

一、一个方程的情形

隐函数存在定理1:

设函数 \displaystyle F(x, y) 在点 \displaystyle P(x_0, y_0) 的某一邻域内具有连续的偏导数,且 \displaystyle F(x_0, y_0) = 0, F_y(x_0, y_0) \neq 0 ,则方程 \displaystyle F(x, y) = 0 在点 \displaystyle (x_0, y_0) 的某一邻域内恒能确定一个连续具有连续导数的函数 \displaystyle y=f(x) ,它满足条件 \displaystyle y_0 = f(x_0) ,并有
\cfrac{\mathrm{d}y}{\mathrm{d}x} = - \cfrac{F_x}{F_y} \tag{1} \label{eq1}
公式 \displaystyle \eqref{eq1} 就是隐函数求导公式。

将方程 \displaystyle F(x, y) = 0 所确定的函数 \displaystyle y = f(x) 代入 \displaystyle F(x, y) = 0 ,的恒等式:
F(x, f(x)) \equiv 0 \nonumber
其左端可看作是 \displaystyle x 的一个复合函数,求这个函数的全导数,由于恒等式两端求导后仍然恒等,即得:
\cfrac{\partial F}{\partial x} + \cfrac{\partial F}{\partial y} \cfrac{\mathrm{d}y}{\mathrm{d}x} = 0 \nonumber
因为 \displaystyle F_y 连续,且 \displaystyle F_y (x_0, y_0) \neq 0 ,所以存在 \displaystyle (x_0, y_0) 的一个邻域,在这个邻域内 \displaystyle F_y \neq 0 ,于是得
\cfrac{\mathrm{d}y}{\mathrm{d}x} = - \cfrac{F_x}{F_y} \nonumber .
如果 \displaystyle F(x,y) 的二阶偏导数也都连续,可以把等式 \displaystyle \eqref{eq1} 的两端看做 \displaystyle x 的复合函数而再一次求导:
\begin{align} \cfrac{\mathrm{d}^2 y}{\mathrm{d}x^2} &= \cfrac{\partial}{\partial x} \left( -\cfrac{F_x}{F_y} \right) + \cfrac{\partial}{\partial x} \left( -\cfrac{F_x}{F_y} \right) \cfrac{\mathrm{d}y}{\mathrm{d}x} \nonumber \\ &= - \cfrac{F_{xx}F_y - F_{yx}F_x}{F^2_y} - \cfrac{F_{xy}F_y - F_{yy}F_x}{F^2_y} \left(-\cfrac{F_x}{F_y} \right) \nonumber \\ &= - \cfrac{F_{xx}F_y - 2F_{xy} F_x F_y + F_{yy}F^2_x}{F^3_y} \nonumber \end{align}

隐函数存在定理2:

设函数 \displaystyle F(x, y, z) 在点 \displaystyle P(x_0, y_0, z_0) 的某一邻域内具有连续的偏导数,且 \displaystyle F(x_0, y_0, z_0) = 0, \, F_z(x_0, y_0, z_0) \neq 0 ,则方程 \displaystyle F(x, y, z) = 0 在点 \displaystyle (x_0, y_0, z_0) 的某一邻域内恒能唯一确定一个连续具有连续导数的函数 \displaystyle z=f(x, y) ,它满足条件 \displaystyle z_0 = f(x_0, y_0) ,并有
\cfrac{\partial z}{\partial x} = - \cfrac{F_x}{F_z} ,\, \cfrac{\partial z}{\partial y} = - \cfrac{F_y}{F_z} . \tag{2} \label{eq2}

例题:设 \displaystyle x^2 + y^2 + z^2 - 4z = 0 ,求 \displaystyle \cfrac{\partial^2 z}{\partial x^2} .

解:\displaystyle F(x, y, z) = x^2 + y^2 + z^2 - 4z ,则 \displaystyle F_x = 2x, \, F_z = 2z - 4 .当 \displaystyle z \neq 2 时,应用公式 \eqref{eq2} 得,
\cfrac{\partial z}{\partial x} = \cfrac{x}{z - z} \nonumber
再一次对 x 求偏导数,得:
\cfrac{\partial^2 z}{\partial x^2} = \cfrac{(2 - z) + x \cfrac{\partial z}{\partial x}}{(2 - z)^2} = \cfrac{(2 - z) + x \left(\cfrac{x}{2 - z} \right)}{(2 - z)^2} = \cfrac{(2 - z)^2 + x^2}{(2 - z)^3} \nonumber

二、方程组的情形

隐函数存在定理3:

设函数 \displaystyle F(x, y, u, v)、G(x, y, u, v) 在点 \displaystyle P(x_0, y_0, u_0, v_0) 的某一邻域内具有对各个变量的连续偏导数,又 \displaystyle F(x_0, y_0, u_0, v_0) = 0, \, G(x_0, y_0, u_0, v_0) = 0 ,且偏导数所组成的函数行列式(或称为雅克比 Jacobi 式)
J = \cfrac{\partial (F, G)}{\partial (u, v)} = \left| \begin{array}{cc} \cfrac{\partial F}{\partial u} & \cfrac{\partial F}{\partial v} \\ \cfrac{\partial G}{\partial u} & \cfrac{\partial G}{\partial v} \end{array} \right| \nonumber
再点 \displaystyle P(x_0, y_0, u_0, v_0) 不等于零,则方程组 \displaystyle F(x, y, u, v)=0,G(x, y, u, v)=0 在点 (x_0, y_0, u_0, v_0) 的某一邻域内恒能唯一确定一组连续且具有连续偏导数的函数 \displaystyle u = u(x, y), v = v(x, y) ,它们满足条件 \displaystyle u_0 = u(x_0, y_0), v_0 = v(x_0, y_0) ,并有
\begin{align} \cfrac{\partial u}{\partial x} &= -\cfrac{1}{J} \cfrac{\partial (F, G)}{\partial (x, v)} = -\cfrac{\left| \begin{array}{cc} F_x & F_v \\ G_x & G_v\end{array} \right|}{\left| \begin{array}{cc} F_u & F_v \\ G_u & G_v\end{array} \right|}, \nonumber \\ \cfrac{\partial v}{\partial x} &= -\cfrac{1}{J} \cfrac{\partial (F, G)}{\partial (u, x)} = -\cfrac{\left| \begin{array}{cc} F_u & F_x \\ G_u & G_x\end{array} \right|}{\left| \begin{array}{cc} F_u & F_v \\ G_u & G_v\end{array} \right|}, \nonumber \\ \cfrac{\partial u}{\partial y} &= -\cfrac{1}{J} \cfrac{\partial (F, G)}{\partial (y, v)} = -\cfrac{\left| \begin{array}{cc} F_y & F_v \\ G_y & G_v\end{array} \right|}{\left| \begin{array}{cc} F_u & F_v \\ G_u & G_v\end{array} \right|}, \nonumber \\ \cfrac{\partial v}{\partial y} &= -\cfrac{1}{J} \cfrac{\partial (F, G)}{\partial (u, y)} = -\cfrac{\left| \begin{array}{cc} F_u & F_y \\ G_u & G_y\end{array} \right|}{\left| \begin{array}{cc} F_u & F_v \\ G_u & G_v\end{array} \right|}. \nonumber \end{align} \tag{3} \label{eq3}

上一篇 下一篇

猜你喜欢

热点阅读