我的第一个 Kaggle 比赛学习 - Titanic

2020-01-25  本文已影响0人  不忘初心2017

背景

Titanic: Machine Learning from Disaster - Kaggle

2 年前就被推荐照着这个比赛做一下,结果我打开这个页面便蒙了,完全不知道该如何下手。

两年后,再次打开这个页面,看到清清楚楚的Titanic Tutorial - Kaggle,完全傻瓜式的照着做就能做下来。当年是什么蒙蔽了我的眼睛~

Target

use machine learning to create a model that predicts which passengers survived the Titanic shipwreck

Data

Titanic: Machine Learning from Disaster - Kaggle

Guide to help start and follow

Titanic Tutorial - Kaggle

Learning Model

摘抄的网站的解释,后面具体谈。

sklearn.ensemble.RandomForestClassifier

Titanic比赛中用到的是 RandomForestClassifier 算法,在了解这个算法前,我注意到 sklearn 中这个算法类是在 ensemble 模块中,英文不好,不知道 ensemble 是什么意思?所以想先了解一下 ensemble

ensemble

字典的解释是:a number of things considered as a group

听起来有组合的意思。

搜索了一下,在 ML 中有 ensemble learning, 翻译多是“集成学习”,参考集成学习(ensemble learning)应如何入门? - 知乎提到,有三种常见的集成学习框架:baggingboostingstacking

API Reference — scikit-learn 0.22.1 documentation中也能看出来这几种框架都有相应的算法。

Random Forestbagging 框架中的一个算法。这里就单先试着理解这个,其他框架等以后遇到了再说。但是了解这个之前,还是得先清楚 Ensemble Learning 到底是什么?

In statistics and machine learning, ensemble methods use multiple learning algorithms to obtain better predictive performance than could be obtained from any of the constituent learning algorithms alone.

这个解释应和了字面上的意思,组合了多种算法来获得更好的预测性能,结果优于单用其中的单个算法。

bagging 框架

sklearn.ensemble.BaggingClassifier — scikit-learn 0.22.1 documentation

A Bagging classifier is an ensemble meta-estimator that fits base classifiers each on random subsets of the original dataset and then aggregate their individual predictions (either by voting or by averaging) to form a final prediction.

大意就是:

问题是:

我都不晓得~

前面提到 Random Forestbagging 框架的一种算法。现在来看看这个算法如何解答我的一些疑问。

Random Forest 算法

1.11. Ensemble methods — scikit-learn 0.22.1 documentation

The prediction of the ensemble is given as the averaged prediction of the individual classifiers.

先明确了一个,这个算法是怼各分类器求平均的。Forest of what? 自然是 forest of trees, 而这里的 tree 指的是 decision trees,所以这个算法其实是 averaging algorithms based on randomized decision trees

random forest builds multiple decision trees and merges them together to get a more accurate and stable prediction.

Random forest对每个分类器都建一个决策树,然后再合并。

分类器是如何划分的呢?还是以 Titanic 的代码为例来试着理解下:

from sklearn.ensemble import RandomForestClassifier

y = train_data["Survived"]

features = ["Pclass", "Sex", "SibSp", "Parch"]
X = pd.get_dummies(train_data[features])
model = RandomForestClassifier(n_estimators=100, max_depth=5, random_state=1)
model.fit(X, y)

尝试直接用 train_data[features], 打印 X 的结果是这样的:

     Pclass     Sex  SibSp  Parch
0         3    male      1      0
1         1  female      1      0

如果再继续用这个 X 建模的话,会报错:

ValueError: could not convert string to float: 'male'

显然,因为 Sex 字段是 string 类型,而模型需要的是 float 类型,所以不能直接用 train_data[features]

get_dummies() 的作用也清楚了,就是将这些 string 类型的字段转化成 float 类型。从下面的打印结果也可以看出,Sex 字段被分成了两个字段,Sex_male, Sex_female, 其值分别是 0 和 1.

Pclass  SibSp  Parch  Sex_female  Sex_male
0         3      1      0           0         1
1         1      1      0           1         0
2         3      0      0           1         0
3         1      1      0           1         0
4         3      0      0           0         1
..      ...    ...    ...         ...       ...
886       2      0      0           0         1
887       1      0      0           1         0
888       3      1      2           1         0
889       1      0      0           0         1
890       3      0      0           0         1

具体如何调参,参考 parameter tuning guidelines

Random Forest的应用场景

既然是分类器算法,自然很多分类应用的场景都适合了;另外还有回归问题的场景。

这篇文章The Random Forest Algorithm: A Complete Guide - Built In给出了一个实际例子的类比:

同样,你拿到了几个 offer,犹豫该接哪个等等;看中了几套房子,决定选哪个,貌似都可以套用这个算法一试了。

学到的几个之前不熟悉的代码

test_data = pd.read_csv("/kaggle/input/titanic/test.csv")
test_data.head()
men = train_data.loc[train_data.Sex == 'male']["Survived"]
rate_men = sum(men)/len(men)

Reference

上一篇下一篇

猜你喜欢

热点阅读