计算机网络

传输层协议(TCP, UDP)

2018-09-19  本文已影响9人  廖马儿

简介

传输层定义了主机应用程序之间端到端的连通性。传输层中最为常见的两个协议分别是传输控制协议TCP(Transmission Control Protocol)和用户数据报协议UDP(User Datagram Protocol)。

为了简化问题说明,本课程以Telnet为例描述相关技术。设备支持通过Telnet协议和Stelnet协议登录。使用Telnet,Stelnet v1协议存在安全风险,建议你使用STelnet v2登录设备。
为了简化问题说明,本课程以FTP为例来描述相关技术。设备支持通过FTP协议,TFTP以及SFTP传输文件。使用FTP,TFTP,SFTP v1协议存在风险,建议使用SFTP v2方式进行文件操作。

TCP

TCP是一种面向连接的传输层协议,提供可靠的传输服务。

图片.png

TCP是一种面向连接的端到端协议。TCP作为传输控制协议,可以为主机提供可靠的数据传输。TCP需要依赖网络协议为主机提供可用的传输路径。

图片.png

TCP允许一个主机同事运行多个应用进程。每台主机可以拥有多个应用端口,没对端口号,源和目标IP地址的组合唯一地标识了一个会话。端口分为知名端口和动态端口。有些网络服务会使用固定的端口,这类端口称为知名端口,端口号范围为0~1023
比如:FTP,HTTP,Telnet,SNMP服务均使用知名端口。
动态端口范围1024~65535,这些端口号一般不会固定分配给某个服务,也就是说许多服务都可以使用这些端口。只要运行的程序向系统提出访问网络的申请,那么系统就可以从这些端口号中分配一个供该程序使用。

TCP头部

图片.png

TCP通常使用IP作为网络层协议,这是TCP数据被封装在IP数据包内。TCP数据段由TCP Header(头部)和TCP Data(数据)组成。TCP最多可以有60个字节的头部,如果没有Options字段,正常的长度是20字节。

TCP Header是由如上图标识一些字段组成,这里列出几个常用字段。

1.16位源端口号:源主机的应用程序使用的端口号。
2.16位目的端口号:目的主机的应用程序使用的端口号。每个TCP头都包含源和目的端口号,这两个值加上IP头部中的源IP地址和目的IP地址可以唯一确定一个TCP连接。
3.32位序列号:用于标识从发送端发出的不同的TCP数据段的序号。数据段在网络中传输时,它们的顺序可能会发生变化;接受端依据此序列号,便可按照正确的顺序重组数据。
4.32位确认序列号:英语标识接受端确认收到的数据段。确认序列号为成功收到的数据序列号加1。
5.4位头部长度:表示头部占32比特字的数目,它能表达的TCP头部最大长度为60字节。
6.16位窗口大小:表示接受端期望通过单次确认而收到的数据的大小。由于该字段为16位,所以窗口大小的最大值为`65535`字节,该机制通常用来进行浏览控制。
7.16位校验和:校验整个TCP报文段,包括TCP头部和TCP数据。该值由发送端计算和记录并由接收端进行验证。
图片.png

注意:

① Send SYN: seq=a
②Send SYN + ACK: seq = b, ack = a+1
③Send ACK: seq=a+1, ack=b+1

1)主机A(通常也叫客户端)发送一个标识了SYN数据段,标识期望与服务器A建立连接,此数据段的序列号(seq)为a;
2)服务器A回复标识了SYN+ACK的数据段,此数据段的序列号(seq)为b,确认序列号为主机A的序列号加1(a+1),以此作为对主机A的SYN报文的确认。
3)主机A发送一个标识了ACK的数据段,此数据段的序列号(seq)为a+1,确认序列号为服务器A的序列号加1(b+1),以此作为对服务器A的SYN报文段的确认。

TCP是一种可靠的,面向连接的全双工传输层协议。
TCP连接的简历是一个三次握手的过程。

TCP传输过程

图片.png

TCP的可靠传输还提现在TCP使用了确认技术来确保目的设备收到了从源设备发来的数据,并且是准确无误的。
确认技术的工作原理如下:
目的设备接收到源设备发送的数据段时,会向源端发送确认报文,源设备收到确认报文后,继续发送数据段,如此重复。
如图所示,主机A向服务器A发送TCP数据段,为描述方便假设每个数据段的长度都是500个字节。
当服务器A成功收到序列号是M+1499的字节以及之前的所有字节时,会以序列号M+1400+1=M+1500进行确认。另外,由于数据段N+3传输失败,所以服务器A未能收到序列号为M+1500的字节,因此服务器A还会再次以序列号M+1500进行确认。

注意:上面说到,数据段N+3传输失败,那么第二次确认号M+1500,主机A会将N+3,N+4,N+5全部发送一次。

TCP流量控制

图片.png

TCP滑动窗口技术通过动态改变窗口大小来实现对端到端设备之间的数据传输进行流量控制。
如图所示,主机A和服务器A之间通过滑动窗口来实现流量控制。为了方便理解,此例中只考虑主机A发送数据给服务器A时,服务器A通过滑动窗口进行流量控制。

例子中:
主机A向服务器发送4个长度为1024字节的数据段,其中主机的窗口大小为4096个字节。服务器A收到第3个字节之后,缓存区满,第4个数据段被丢弃。服务器以ACK3073(1024*3=3072)响应,窗口大小调整为3072,表明服务器的缓冲区只能处理3072个字节的数据段。于是主机A改变其发送速率,发送窗口大小为3072的数据段。

TCP关闭连接

图片.png

主机在关闭连接之前,要确认收到来自对方的ACK。

TCP支持全双工模式传输数据,这意味着统一时刻两个方向都可以进行数据的传输。在传输数据之前,TCP通过三次握手建立的实际上是两个方向的连接,一次在传输完毕后,两个方向的连接必须都关闭。
TCP连接的建立是一个三次握手过程,而TCP连接的终止则要经过四次挥别。

如图:
1.主机A想终止连接,于是发送一个标识了FIN,ACK的数据段,序列号为a,确认序列号为b。
2.服务器A回应一个标识了ACK的数据段,序列号为b,确认序号为a+1,作为对主机A的FIN报文的确认。
3.服务器A想终止连接,于是向主机A发送一个标识了FIN,ACK的数据段,序列号为b,确认好为a+1。
4.主机A回应一个标识了ACK的数据段,序列号为a+1,确认序号为b+1,作为对服务器A的FIN报文的确认。
以上四次交互完成了两个方向连接的关闭。

图片.png

TCP断开连接的步骤,这个比较详细:
https://blog.csdn.net/ctrl_qun/article/details/52518479

UDP

UDP是一种面向无连接的传输层协议,传输可靠性没有保证。


图片.png

当应用程序对传输的可靠性要求不高时,但是对传输速度和延迟要求较高时,可以用UDP协议来替代TCP协议在传输层控制数据的转发。UDP将数据从源端发送到目的端时,无需事先建立连接。UDP采用了简单,容易操作的机制在应用程序间传输数据,没有使用TCP中的确认技术或滑动窗口机制,因此UDP不能保证数据传输的可靠性,也无法避免接受到重复数据的情况。

UDP头部

图片.png

UDP头部仅占8个字节,传输数据时没有确认机制(注意,但是有校验和)。

UDP报文分为UDP报文头和UDP数据区域两个部分。报头由源端口,目的端口,报文长度以及校验和组成。UDP适合于实时数据传输,比如语音和视频通信。相比TCP,UDP的传输效率更高,开销更小,但是无法保证数据传输可靠性。UDP头部的标识如下:
1)16位源端口号:源主机的应用程序使用的端口号。
2)16位目的端口号:目的主机的应用程序使用的端口号。
3)16位UDP长度:是指UDP头部和UDP数据的字节长度。因为UDP头部长度是8字节,所以字段的最小值为8。
4)16位UDP校验和:该字段提供了与TCP校验字段同样的功能;该字段是可选的。

UDP传输过程

图片.png

使用UDP传输数据时,由应用程序根据需要提供报文到达确认,排序,流量控制等功能。

主机A发送数据包时,这些数据包是以有序的方式发送到网络中的,每个数据包独立地在网络中被发送,所以不同的数据包可能会通过不同的网路径叨叨主机B。这样的情况下,先发送的数据包不一定先到达主机B。因为UDP数据包没有序号,主机B将无法通过UDP协议将数据包按照原来的顺序重新组合,所以此时需要应用程序提供报文的到达确认,排序和流量控制等功能(也就是说UDP报文的到达确认,排序和流量控制是应用程序来确定的)。通常情况下,UDP采用实时传输机制和时间戳来传输语音和视频数据。

UDP传输过程

图片.png

UDP适合传输对延迟敏感的流量,如语音和视频。
在使用TCP协议传输数据时,如果一个数据段丢失或者接受端对某个数据段没有确认,发送端会重新发送该数据段。
TCP重新发送数据会带来传输延迟和重复数据,降低了用户的体验。对于延迟敏感的应用,少量的数据丢失一般可以被忽略,这是使用UDP传输能够提升用户的体验。

总结:
1.TCP头部中的确认标识位有什么作用呢?
TCP报文头中的ACK标识位用于目的端对已接受到数据的确认。目的端成功收到序列号为x的字节后,会以序列号x+1进行确认。
2.TCP头部中有哪些标识位参与TCP三次握手?
在TCP三次握手过程中,要使用SYN和ACK标识位来请求建立连接和确认建立连接。

上一篇下一篇

猜你喜欢

热点阅读