LeetCode-六道股票问题
2019-12-06 本文已影响0人
傅晨明
121. 买卖股票的最佳时机
122. 买卖股票的最佳时机 II
123. 买卖股票的最佳时机 III
188. 买卖股票的最佳时机 IV
309. 最佳买卖股票时机含冷冻期
714. 买卖股票的最佳时机含手续费
以188. 买卖股票的最佳时机 IV 为例讲解,因为其他题可以通过这道题演化出来。
dp[i][k][0 or 1] (0 <= i <= n-1, 1 <= k <= K)
i 为天数
k 为最多交易次数 [0,1] 为是否持有股票
总状态数: n * K * 2 种状态
for 0 <= i < n:
for 1 <= k <= K:
for s in {0, 1}:
dp[i][k][s] = max(buy, sell, rest)
状态转移方程:
dp[i][k][0] = max(dp[i-1][k][0], dp[i-1][k][1] + prices[i])
max( 选择 rest , 选择 sell )
解释:今天我没有持有股票,有两种可能:
- 我昨天就没有持有,然后今天选择 rest,所以我今天还是没有持有;
- 我昨天持有股票,但是今天我 sell 了,所以我今天没有持有股票了。
dp[i][k][1] = max(dp[i-1][k][1], dp[i-1][k-1][0] - prices[i])
max( 选择 rest , 选择 buy )
解释:今天我持有着股票,有两种可能:
- 我昨天就持有着股票,然后今天选择 rest,所以我今天还持有着股票;
- 我昨天本没有持有,但今天我选择 buy,所以今天我就持有股票了。
初始状态:
dp[-1][k][0] = dp[i][0][0] = 0
dp[-1][k][1] = dp[i][0][1] = -infinity
状态转移方程:
dp[i][k][0] = max(dp[i-1][k][0], dp[i-1][k][1] + prices[i])
dp[i][k][1] = max(dp[i-1][k][1], dp[i-1][k-1][0] - prices[i])
121. 买卖股票的最佳时机
public int maxProfit(int[] prices) {
int n = prices.length;
if (n == 0) {
return 0;
}
int k = 1;
int[][][] dp = new int[n][k + 1][2];
dp[0][k][0] = 0;
dp[0][k][1] = -prices[0];
for (int i = 1; i < n; i++) {
dp[i][k][0] = Math.max(dp[i - 1][k][0], dp[i - 1][k][1] + prices[i]);
dp[i][k][1] = Math.max(dp[i - 1][k][1], dp[i - 1][k - 1][0] - prices[i]);
}
return dp[n - 1][k][0];
}
对于k=1,dp[i-1][0][0] = 0(表示没有买过股票并且当前没有持有股票),可以化简去掉所有 k:
public int maxProfit(int[] prices) {
int n = prices.length;
if (n == 0) {
return 0;
}
int[][] dp = new int[n][2];
dp[0][0] = 0;
dp[0][1] = -prices[0];
for (int i = 1; i < n; i++) {
dp[i][0] = Math.max(dp[i - 1][0], dp[i - 1][1] + prices[i]);
dp[i][1] = Math.max(dp[i - 1][1], -prices[i]);
}
return dp[n - 1][0];
}
状态转移方程的新状态只和相邻的一个状态有关,其实不用整个 dp 数组,只需要一个变量储存相邻的那个状态就足够了,这样可以把空间复杂度降到 O(1):
public int maxProfit(int[] prices) {
int n = prices.length;
if (n == 0) {
return 0;
}
int dp_i_0 = 0;
int dp_i_1 = -prices[0];
for (int i = 1; i < n; i++) {
dp_i_0 = Math.max(dp_i_0, dp_i_1 + prices[i]);
dp_i_1 = Math.max(dp_i_1, -prices[i]);
}
return dp_i_0;
}
122. 买卖股票的最佳时机 II
k 为正无穷,那么就可以认为 k 和 k - 1 是一样的。可以这样改写框架:
dp[i][k][0] = max(dp[i-1][k][0], dp[i-1][k][1] + prices[i])
dp[i][k][1] = max(dp[i-1][k][1], dp[i-1][k-1][0] - prices[i])
= max(dp[i-1][k][1], dp[i-1][k][0] - prices[i])
我们发现数组中的 k 已经不会改变了,也就是说不需要记录 k 这个状态了:
dp[i][0] = max(dp[i-1][0], dp[i-1][1] + prices[i])
dp[i][1] = max(dp[i-1][1], dp[i-1][0] - prices[i])
public int maxProfit(int[] prices) {
int n = prices.length;
if (n == 0) {
return 0;
}
int[][] dp = new int[n][2];
dp[0][0] = 0;
dp[0][1] = -prices[0];
for (int i = 1; i < n; i++) {
dp[i][0] = Math.max(dp[i - 1][0], dp[i - 1][1] + prices[i]);
dp[i][1] = Math.max(dp[i - 1][1], dp[i - 1][0] - prices[i]);
}
return dp[n - 1][0];
}
使用变量存储:
public int maxProfit(int[] prices) {
int n = prices.length;
if (n == 0) {
return 0;
}
int dp_i_0 = 0;
int dp_i_1 = -prices[0];
for (int i = 1; i < n; i++) {
dp_i_0 = Math.max(dp_i_0, dp_i_1 + prices[i]);
dp_i_1 = Math.max(dp_i_1, dp_i_0 - prices[i]);
}
return dp_i_0;
}
123. 买卖股票的最佳时机 III
public int maxProfit(int[] prices) {
int n = prices.length;
if (n == 0) {
return 0;
}
int max_k = 2;
int[][][] dp = new int[n][max_k + 1][2];
for (int i = 1; i < n; i++) {
for (int k = max_k; k >= 1; k--) {
dp[0][k][0] = 0;
dp[0][k][1] = -prices[0];
dp[i][k][0] = Math.max(dp[i - 1][k][0], dp[i - 1][k][1] + prices[i]);
dp[i][k][1] = Math.max(dp[i - 1][k][1], dp[i - 1][k - 1][0] - prices[i]);
}
}
return dp[n - 1][max_k][0];
}
public int maxProfit(int[] prices) {
int n = prices.length;
if (n == 0) {
return 0;
}
int[][][] dp = new int[n][3][2];
dp[0][2][0] = 0;
dp[0][1][0] = 0;
dp[0][1][1] = -prices[0];
dp[0][2][1] = -prices[0];
for (int i = 1; i < n; i++) {
dp[i][2][0] = Math.max(dp[i - 1][2][0], dp[i - 1][2][1] + prices[i]);
dp[i][2][1] = Math.max(dp[i - 1][2][1], dp[i - 1][1][0] - prices[i]);
dp[i][1][0] = Math.max(dp[i - 1][1][0], dp[i - 1][1][1] + prices[i]);
dp[i][1][1] = Math.max(dp[i - 1][1][1], -prices[i]);
}
return dp[n - 1][2][0];
}
public int maxProfit(int[] prices) {
if (prices.length == 0) {
return 0;
}
int dp_i10 = 0;
int dp_i20 = 0;
// int dp_i11 = Integer.MIN_VALUE;
// int dp_i21 = Integer.MIN_VALUE;
int dp_i11 = -prices[0];
int dp_i21 = -prices[0];
for (int price : prices) {
dp_i20 = Math.max(dp_i20, dp_i21 + price);
dp_i21 = Math.max(dp_i21, dp_i10 - price);
dp_i10 = Math.max(dp_i10, dp_i11 + price);
dp_i11 = Math.max(dp_i11, -price);
}
return dp_i20;
}
188. 买卖股票的最佳时机 IV
public int maxProfit(int max_k, int[] prices) {
int n = prices.length;
if (n == 0) {
return 0;
}
if (max_k > n / 2)// 超出内存限制
return maxProfit_k_inf(prices);
int[][][] dp = new int[n][max_k + 1][2];
for (int i = 1; i < n; i++)
for (int k = max_k; k >= 1; k--) {
dp[0][k][0] = 0;
dp[0][k][1] = -prices[0];
dp[i][k][0] = Math.max(dp[i - 1][k][0], dp[i - 1][k][1] + prices[i]);
dp[i][k][1] = Math.max(dp[i - 1][k][1], dp[i - 1][k - 1][0] - prices[i]);
}
return dp[n - 1][max_k][0];
}
int maxProfit_k_inf(int[] prices) {
int n = prices.length;
int dp_i_0 = 0, dp_i_1 = Integer.MIN_VALUE;
for (int i = 0; i < n; i++) {
int temp = dp_i_0;
dp_i_0 = Math.max(dp_i_0, dp_i_1 + prices[i]);
dp_i_1 = Math.max(dp_i_1, temp - prices[i]);
}
return dp_i_0;
}