Spark metrics实现KafkaSink
2018-05-19 本文已影响56人
BIGUFO
背景
监控是Spark非常重要的一部分。Spark的运行情况是由ListenerBus以及MetricsSystem 来完成的。通过Spark的Metrics系统,我们可以把Spark Metrics的收集到的信息发送到各种各样的Sink,比如HTTP、JMX以及CSV文件。
目前支持的Sink包括:
- ConsoleSink
- CSVSink
- JmxSink
- MetricsServlet
- GraphiteSink
- GangliaSink
有时我们需要实时获取metrics数据通过spark分析展示等需求,这个时候若有个KafkaSink将metrics指标数据实时往kafka发送那就太方便了,故有了这篇博文。
实践
所有的Sink都需要继承Sink这个特质:
private[spark] trait Sink {
def start(): Unit
def stop(): Unit
def report(): Unit
}
当该Sink注册到metrics系统中时,会调用start方法进行一些初始化操作,再通过report方式进行真正的输出操作,stop方法可以进行一些连接关闭等操作。直接上代码:
package org.apache.spark.metrics.sink
import java.util.concurrent.TimeUnit
import java.util.{Locale, Properties}
import com.codahale.metrics.MetricRegistry
import org.apache.kafka.clients.producer.KafkaProducer
import org.apache.spark.SecurityManager
import org.apache.spark.internal.Logging
private[spark] class KafkaSink(val property: Properties, val registry: MetricRegistry,
securityMgr: SecurityManager) extends Sink with Logging{
val KAFKA_KEY_PERIOD = "period"
val KAFKA_DEFAULT_PERIOD = 10
val KAFKA_KEY_UNIT = "unit"
val KAFKA_DEFAULT_UNIT = "SECONDS"
val KAFKA_TOPIC = "topic"
val KAFKA_DEFAULT_TOPIC = "kafka-sink-topic"
val KAFAK_BROKERS = "kafka-brokers"
val KAFAK_DEFAULT_BROKERS = "XXX:9092"
val TOPIC = Option(property.getProperty(KAFKA_TOPIC)).getOrElse(KAFKA_DEFAULT_TOPIC)
val BROKERS = Option(property.getProperty(KAFAK_BROKERS)).getOrElse(throw new IllegalStateException("kafka-brokers is null!"))
private val kafkaProducerConfig = new Properties()
kafkaProducerConfig.put("bootstrap.servers",BROKERS)
kafkaProducerConfig.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer")
kafkaProducerConfig.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer")
private val producer = new KafkaProducer[String, String](kafkaProducerConfig)
private val reporter: KafkaReporter = KafkaReporter.forRegistry(registry)
.topic(TOPIC)
.build(producer)
val pollPeriod = Option(property.getProperty(KAFKA_KEY_PERIOD)) match {
case Some(s) => s.toInt
case None => KAFKA_DEFAULT_PERIOD
}
val pollUnit: TimeUnit = Option(property.getProperty(KAFKA_KEY_UNIT)) match {
case Some(s) => TimeUnit.valueOf(s.toUpperCase(Locale.ROOT))
case None => TimeUnit.valueOf(KAFKA_DEFAULT_UNIT)
}
override def start(): Unit = {
log.info("I4 Metrics System KafkaSink Start ......")
reporter.start(pollPeriod, pollUnit)
}
override def stop(): Unit = {
log.info("I4 Metrics System KafkaSink Stop ......")
reporter.stop()
producer.close()
}
override def report(): Unit = {
log.info("I4 Metrics System KafkaSink Report ......")
reporter.report()
}
}
KafkaReporter类:
package org.apache.spark.metrics.sink;
import com.alibaba.fastjson.JSONObject;
import com.codahale.metrics.*;
import com.twitter.bijection.Injection;
import com.twitter.bijection.avro.GenericAvroCodecs;
import org.apache.avro.Schema;
import org.apache.avro.generic.GenericData;
import org.apache.avro.generic.GenericRecord;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import java.util.Map;
import java.util.SortedMap;
import java.util.concurrent.TimeUnit;
public class KafkaReporter extends ScheduledReporter {
private static final Logger LOGGER = LoggerFactory.getLogger(KafkaReporter.class);
public static KafkaReporter.Builder forRegistry(MetricRegistry registry) {
return new KafkaReporter.Builder(registry);
}
private KafkaProducer producer;
private Clock clock;
private String topic;
private KafkaReporter(MetricRegistry registry,
TimeUnit rateUnit,
TimeUnit durationUnit,
MetricFilter filter,
Clock clock,
String topic,
KafkaProducer producer) {
super(registry, "kafka-reporter", filter, rateUnit, durationUnit);
this.producer = producer;
this.topic = topic;
this.clock = clock;
}
@Override
public void report(SortedMap<String, Gauge> gauges, SortedMap<String, Counter> counters, SortedMap<String, Histogram> histograms, SortedMap<String, Meter> meters, SortedMap<String, Timer> timers) {
final long timestamp = TimeUnit.MILLISECONDS.toSeconds(clock.getTime());
// Gauge
for (Map.Entry<String, Gauge> entry : gauges.entrySet()) {
reportGauge(timestamp,entry.getKey(), entry.getValue());
}
// Histogram
// for (Map.Entry<String, Histogram> entry : histograms.entrySet()) {
// reportHistogram(timestamp, entry.getKey(), entry.getValue());
// }
}
private void reportGauge(long timestamp, String name, Gauge gauge) {
report(timestamp, name, gauge.getValue());
}
private void reportHistogram(long timestamp, String name, Histogram histogram) {
final Snapshot snapshot = histogram.getSnapshot();
report(timestamp, name, snapshot.getMax());
}
private void report(long timestamp, String name, Object values) {
JSONObject jsonObject = new JSONObject();
jsonObject.put("name",name);
jsonObject.put("timestamp",timestamp);
jsonObject.put("value",values);
producer.send(new ProducerRecord(topic,name, jsonObject.toJSONString()));
}
public static class Builder {
private final MetricRegistry registry;
private TimeUnit rateUnit;
private TimeUnit durationUnit;
private MetricFilter filter;
private Clock clock;
private String topic;
private Builder(MetricRegistry registry) {
this.registry = registry;
this.rateUnit = TimeUnit.SECONDS;
this.durationUnit = TimeUnit.MILLISECONDS;
this.filter = MetricFilter.ALL;
this.clock = Clock.defaultClock();
}
/**
* Convert rates to the given time unit.
*
* @param rateUnit a unit of time
* @return {@code this}
*/
public KafkaReporter.Builder convertRatesTo(TimeUnit rateUnit) {
this.rateUnit = rateUnit;
return this;
}
/**
* Convert durations to the given time unit.
*
* @param durationUnit a unit of time
* @return {@code this}
*/
public KafkaReporter.Builder convertDurationsTo(TimeUnit durationUnit) {
this.durationUnit = durationUnit;
return this;
}
/**
* Use the given {@link Clock} instance for the time.
*
* @param clock a {@link Clock} instance
* @return {@code this}
*/
public Builder withClock(Clock clock) {
this.clock = clock;
return this;
}
/**
* Only report metrics which match the given filter.
*
* @param filter a {@link MetricFilter}
* @return {@code this}
*/
public KafkaReporter.Builder filter(MetricFilter filter) {
this.filter = filter;
return this;
}
/**
* Only report metrics which match the given filter.
*
* @param topic a
* @return {@code this}
*/
public KafkaReporter.Builder topic(String topic) {
this.topic = topic;
return this;
}
/**
* Builds a {@link KafkaReporter} with the given properties, writing {@code .csv} files to the
* given directory.
*
* @return a {@link KafkaReporter}
*/
public KafkaReporter build(KafkaProducer producer) {
return new KafkaReporter(registry,
rateUnit,
durationUnit,
filter,
clock,
topic,
producer);
}
}
}
其中的report方法就是获取各种类型指标,并进行对应的输出操作的时机。
如何使用
可在配置文件或者程序中设定需要注册的sink,并带上对应的参数即可:
spark.metrics.conf.*.sink.kafka.class=org.apache.spark.metrics.sink.KafkaSink
spark.metrics.conf.*.sink.kafka.kafka-brokers=XXX:9092
我的GitHub