程序员Java 杂谈面试

主流消息队列MQ比较,MQ的4类应用场景

2019-04-10  本文已影响21人  _年少无为

消息队列具有低耦合、可靠投递、广播、流量控制、最终一致性等一系列功能,是成为异步RPC的主要手段之一。

当今市面上有很多主流的消息中间件,如老牌的ActiveMQ、RabbitMQ,炙手可热的Kafka,阿里巴巴自主开发的Notify、MetaQ、RocketMQ等。

本文主要探讨主流的消息队列MQ比较,特征,以及典型使用场景。

一、目前主流的MQ产品

1.ZeroMQ

号称最快的消息队列系统,尤其针对大吞吐量的需求场景。

扩展性好,开发比较灵活,采用C语言实现,实际上只是一个socket库的重新封装,如果做为消息队列使用,需要开发大量的代码。ZeroMQ仅提供非持久性的队列,也就是说如果down机,数据将会丢失。其中,Twitter的Storm中使用ZeroMQ作为数据流的传输。

2.RabbitMQ

结合erlang语言本身的并发优势,支持很多的协议:AMQP,XMPP, SMTP, STOMP,也正是如此,使的它变的非常重量级,更适合于企业级的开发。

性能较好,但是不利于做二次开发和维护。

3.ActiveMQ

历史悠久的开源项目,是Apache下的一个子项目。已经在很多产品中得到应用,实现了JMS1.1规范,可以和spring-jms轻松融合,实现了多种协议,不够轻巧(源代码比RocketMQ多),支持持久化到数据库,对队列数较多的情况支持不好。

4.Redis

为一个基于内存的K-V数据库,其提供了消息订阅的服务,可以当作MQ来使用,目前应用案例较少,且不方便扩展。对于RabbitMQ和Redis的入队和出队操作,各执行100万次,每10万次记录一次执行时间。

测试数据分为 128Bytes、512Bytes、1K和10K四个不同大小的数据。

实验表明:入队时,当数据比较小时Redis的性能要高于RabbitMQ,而如 果数据大小超过了10K,Redis则慢的无法忍受;出队时,无论数据大小,Redis都表现出非常好的性能,而RabbitMQ的出队性能则远低于 Redis。

5.Kafka/Jafka

Kafka是Apache下的一个子项目,是一个高性能跨语言分布式发布/订阅消息队列系统,而Jafka是在Kafka之上孵化而来的,即Kafka的一个升级版。

具有以下特性:

何时需要消息队列

当你需要使用消息队列时,首先需要考虑它的必要性。

可以使用mq的场景有很多,最常用的几种:

反之,如果需要强一致性,关注业务逻辑的处理结果,则RPC显得更为合适。

二、消息队列使用场景

1.解耦

解耦是消息队列要解决的最本质问题。所谓解耦,简单点讲就是一个事务,只关心核心的流程。而需要依赖其他系统但不那么重要的事情,有通知即可,无需等待结果。换句话说,基于消息的模型,关心的是“通知”,而非“处理”。

举一个例子,关于订单系统,订单最终支付成功之后可能需要给用户发送短信积分什么的,但其实这已经不是我们系统的核心流程了。

如果外部系统速度偏慢(比如短信网关速度不好),那么主流程的时间会加长很多,用户肯定不希望点击支付过好几分钟才看到结果。那么我们只需要通知短信系统“我们支付成功了”,不一定非要等待它立即处理完成。

2.最终一致性

最终一致性指的是两个系统的状态保持一致,要么都成功,要么都失败。

当然有个时间限制,理论上越快越好,但实际上在各种异常的情况下,可能会有一定延迟达到最终一致状态,但最后两个系统的状态是一样的。

业界有一些为“最终一致性”而生的消息队列,如:

其设计初衷,就是为了交易系统中的高可靠通知。

以一个银行的转账过程来理解最终一致性,转账的需求很简单,如果A系统扣钱成功,则B系统加钱一定成功。反之则一起回滚,像什么都没发生一样。

然而,这个过程中存在很多可能的意外:

可见,想把这件看似简单的事真正做成,真的不那么容易。

所有跨VM的一致性问题,从技术的角度讲通用的解决方案是:

最终一致性不是消息队列的必备特性,但确实可以依靠消息队列来做最终一致性的事情。

另外,所有不保证100%不丢消息的消息队列,理论上无法实现最终一致性。好吧,应该说理论上的100%,排除系统严重故障和bug。

像Kafka一类的设计,在设计层面上就有丢消息的可能(比如定时刷盘,如果掉电就会丢消息)。哪怕只丢千分之一的消息,业务也必须用其他的手段来保证结果正确。

2.广播

消息队列的基本功能之一是进行广播。

如果没有消息队列,每当一个新的业务方接入,我们都要联调一次新接口。有了消息队列,我们只需要关心消息是否送达了队列,至于谁希望订阅,是下游的事情,无疑极大地减少了开发和联调的工作量。

比如本文开始提到的产品中心发布产品变更的消息,以及景点库很多去重更新的消息,可能“关心”方有很多个,但产品中心和景点库只需要发布变更消息即可,谁关心谁接入。

3.错峰与流控

试想上下游对于事情的处理能力是不同的。

比如,Web前端每秒承受上千万的请求,并不是什么神奇的事情,只需要加多一点机器,再搭建一些LVS负载均衡设备和Nginx等即可。

但数据库的处理能力却十分有限,即使使用SSD加分库分表,单机的处理能力仍然在万级。由于成本的考虑,我们不能奢求数据库的机器数量追上前端。

这种问题同样存在于系统和系统之间,如短信系统可能由于短板效应,速度卡在网关上(每秒几百次请求),跟前端的并发量不是一个数量级。

但用户晚上个半分钟左右收到短信,一般是不会有太大问题的。如果没有消息队列,两个系统之间通过协商、滑动窗口等复杂的方案也不是说不能实现。

但系统复杂性指数级增长,势必在上游或者下游做存储,并且要处理定时、拥塞等一系列问题。而且每当有处理能力有差距的时候,都需要单独开发一套逻辑来维护这套逻辑。所以,利用中间系统转储两个系统的通信内容,并在下游系统有能力处理这些消息的时候,再处理这些消息,是一套相对较通用的方式。

三、消息队列使用总结

1.消息队列不是万能的,对于需要强事务保证而且延迟敏感的,RPC是优于消息队列的。

2.对于一些无关痛痒,或者对于别人非常重要但是对于自己不是那么关心的事情,可以利用消息队列去做。

3.支持最终一致性的消息队列,能够用来处理延迟不那么敏感的“分布式事务”场景,而且相对于笨重的分布式事务,可能是更优的处理方式。

4.当上下游系统处理能力存在差距的时候,利用消息队列做一个通用的“漏斗”,在下游有能力处理的时候,再进行分发。

5.如果下游有很多系统关心你的系统发出的通知的时候,果断地使用消息队列吧。

以上,是消息队列应用场景的内容分享。

----end----

喜欢的可以点赞关注哦~

上一篇下一篇

猜你喜欢

热点阅读