Java入门基础

Java数组排序原理

2019-10-03  本文已影响0人  橙味菌

Arrays排序原理

Java Arrays排序原理

计数排序源码

(short为例)

​
for (int i = left - 1; ++i <= right;count[a[i] - Short.MIN_VALUE]++);
​
for (int i = NUM_SHORT_VALUES, k = right + 1; k > left; ) {
 while (count[--i] == 0);
 short value = (short) (i + Short.MIN_VALUE);
 int s = count[i];
​
 do {
 a[--k] = value;
 } while (--s > 0);
}

插入排序源码

(int为例)

 /*传统插排(无哨兵Sentinel)
 * 遍历
 *    循环向左比较(<左侧元素——换位)-直到大于左侧元素
 */
 for (int i = left, j = i; i < right; j = ++i) {
 int ai = a[i + 1];
 while (ai < a[j]) {
 a[j + 1] = a[j];
 if (j-- == left) {
 break;
 }
 }
 a[j + 1] = ai;
 }
} else {
 //如果一开始就是排好序的——直接返回
 do {
 if (left >= right) {
 return;
 }
 } while (a[++left] >= a[left - 1]);
​
 //优化插排(以两个为单位遍历,大的元素充当哨兵,以减少小的元素循环向左比较的范围)
 for (int k = left; ++left <= right; k = ++left) {
 int a1 = a[k], a2 = a[left];
​
 if (a1 < a2) {
 a2 = a1; a1 = a[left];
 }
 while (a1 < a[--k]) {
 a[k + 2] = a[k];
 }
 a[++k + 1] = a1;
​
 while (a2 < a[--k]) {
 a[k + 1] = a[k];
 }
 a[k + 1] = a2;
 }
 //确保最后一个元素被排序
 int last = a[right];
​
 while (last < a[--right]) {
 a[right + 1] = a[right];
 }
 a[right + 1] = last;
}
return;

快排源码

(int为例)

// 快排阈值是286 其7分之一小于等于1/8+1/64+1
int seventh = (length >> 3) + (length >> 6) + 1;
​
// 获取分成7份的五个中间点
int e3 = (left + right) >>> 1; // The midpoint
int e2 = e3 - seventh;
int e1 = e2 - seventh;
int e4 = e3 + seventh;
int e5 = e4 + seventh;
​
// 保证中间点的元素从小到大排序
if (a[e2] < a[e1]) { 
 int t = a[e2]; a[e2] = a[e1]; a[e1] = t; }
​
if (a[e3] < a[e2]) { 
 int t = a[e3]; a[e3] = a[e2]; a[e2] = t;
 if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; }
}
if (a[e4] < a[e3]) { 
 int t = a[e4]; a[e4] = a[e3]; a[e3] = t;
 if (t < a[e2]) { a[e3] = a[e2]; a[e2] = t;
 if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; }
 }
}
if (a[e5] < a[e4]) { 
 int t = a[e5]; a[e5] = a[e4]; a[e4] = t;
 if (t < a[e3]) { a[e4] = a[e3]; a[e3] = t;
 if (t < a[e2]) { a[e3] = a[e2]; a[e2] = t;
 if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; }
 }
 }
}
​
// Pointers
int less  = left;  // The index of the first element of center part
int great = right; // The index before the first element of right part
​
//点彼此不相等——分三段快排,否则分两段
if (a[e1] != a[e2] && a[e2] != a[e3] && a[e3] != a[e4] && a[e4] != a[e5]) {
 /*
 * Use the second and fourth of the five sorted elements as pivots.
 * These values are inexpensive approximations of the first and
 * second terciles of the array. Note that pivot1 <= pivot2.
 */
 int pivot1 = a[e2];
 int pivot2 = a[e4];
​
 /*
 * The first and the last elements to be sorted are moved to the
 * locations formerly occupied by the pivots. When partitioning
 * is complete, the pivots are swapped back into their final
 * positions, and excluded from subsequent sorting.
 */
 a[e2] = a[left];
 a[e4] = a[right];
​
 while (a[++less] < pivot1);
 while (a[--great] > pivot2);
​
 /*
 * Partitioning:
 *
 *   left part           center part                   right part
 * +--------------------------------------------------------------+
 * |  < pivot1  |  pivot1 <= && <= pivot2  |    ?    |  > pivot2  |
 * +--------------------------------------------------------------+
 *               ^                          ^       ^
 *               |                          |       |
 *              less                        k     great
 */
 outer:
 for (int k = less - 1; ++k <= great; ) {
 int ak = a[k];
 if (ak < pivot1) { // Move a[k] to left part
 a[k] = a[less];
 /*
 * Here and below we use "a[i] = b; i++;" instead
 * of "a[i++] = b;" due to performance issue.
 */
 a[less] = ak;
 ++less;
 } else if (ak > pivot2) { // Move a[k] to right part
 while (a[great] > pivot2) {
 if (great-- == k) {
 break outer;
 }
 }
 if (a[great] < pivot1) { // a[great] <= pivot2
 a[k] = a[less];
 a[less] = a[great];
 ++less;
 } else { // pivot1 <= a[great] <= pivot2
 a[k] = a[great];
 }
 /*
 * Here and below we use "a[i] = b; i--;" instead
 * of "a[i--] = b;" due to performance issue.
 */
 a[great] = ak;
 --great;
 }
 }
​
 // Swap pivots into their final positions
 a[left]  = a[less  - 1]; a[less  - 1] = pivot1;
 a[right] = a[great + 1]; a[great + 1] = pivot2;
​
 // Sort left and right parts recursively, excluding known pivots
 sort(a, left, less - 2, leftmost);
 sort(a, great + 2, right, false);
​
 /*
 * If center part is too large (comprises > 4/7 of the array),
 * swap internal pivot values to ends.
 */
 if (less < e1 && e5 < great) {
 /*
 * Skip elements, which are equal to pivot values.
 */
 while (a[less] == pivot1) {
 ++less;
 }
​
 while (a[great] == pivot2) {
 --great;
 }
​
 /*
 * Partitioning:
 *
 *   left part         center part                  right part
 * +----------------------------------------------------------+
 * | == pivot1 |  pivot1 < && < pivot2  |    ?    | == pivot2 |
 * +----------------------------------------------------------+
 *              ^                        ^       ^
 *              |                        |       |
 *             less                      k     great
 *
 * Invariants:
 *
 *              all in (*,  less) == pivot1
 *     pivot1 < all in [less,  k)  < pivot2
 *              all in (great, *) == pivot2
 *
 * Pointer k is the first index of ?-part.
 */
 outer:
 for (int k = less - 1; ++k <= great; ) {
 int ak = a[k];
 if (ak == pivot1) { // Move a[k] to left part
 a[k] = a[less];
 a[less] = ak;
 ++less;
 } else if (ak == pivot2) { // Move a[k] to right part
 while (a[great] == pivot2) {
 if (great-- == k) {
 break outer;
 }
 }
 if (a[great] == pivot1) { // a[great] < pivot2
 a[k] = a[less];
 /*
 * Even though a[great] equals to pivot1, the
 * assignment a[less] = pivot1 may be incorrect,
 * if a[great] and pivot1 are floating-point zeros
 * of different signs. Therefore in float and
 * double sorting methods we have to use more
 * accurate assignment a[less] = a[great].
 */
 a[less] = pivot1;
 ++less;
 } else { // pivot1 < a[great] < pivot2
 a[k] = a[great];
 }
 a[great] = ak;
 --great;
 }
 }
 }
​
 // Sort center part recursively
 sort(a, less, great, false);
​
} else { // Partitioning with one pivot
 /*
 * Use the third of the five sorted elements as pivot.
 * This value is inexpensive approximation of the median.
 */
 int pivot = a[e3];
​
 /*
 * Partitioning degenerates to the traditional 3-way
 * (or "Dutch National Flag") schema:
 *
 *   left part    center part              right part
 * +-------------------------------------------------+
 * |  < pivot  |   == pivot   |     ?    |  > pivot  |
 * +-------------------------------------------------+
 *              ^              ^        ^
 *              |              |        |
 *             less            k      great
 *
 * Invariants:
 *
 *   all in (left, less)   < pivot
 *   all in [less, k)     == pivot
 *   all in (great, right) > pivot
 *
 * Pointer k is the first index of ?-part.
 */
 for (int k = less; k <= great; ++k) {
 if (a[k] == pivot) {
 continue;
 }
 int ak = a[k];
 if (ak < pivot) { // Move a[k] to left part
 a[k] = a[less];
 a[less] = ak;
 ++less;
 } else { // a[k] > pivot - Move a[k] to right part
 while (a[great] > pivot) {
 --great;
 }
 if (a[great] < pivot) { // a[great] <= pivot
 a[k] = a[less];
 a[less] = a[great];
 ++less;
 } else { // a[great] == pivot
 /*
 * Even though a[great] equals to pivot, the
 * assignment a[k] = pivot may be incorrect,
 * if a[great] and pivot are floating-point
 * zeros of different signs. Therefore in float
 * and double sorting methods we have to use
 * more accurate assignment a[k] = a[great].
 */
 a[k] = pivot;
 }
 a[great] = ak;
 --great;
 }
 }
​
 /*
 * Sort left and right parts recursively.
 * All elements from center part are equal
 * and, therefore, already sorted.
 */
 sort(a, left, less - 1, leftmost);
 sort(a, great + 1, right, false);
}

归并排序前置处理

//判断结构是否适合归并排序
int[] run = new int[MAX_RUN_COUNT + 1];
int count = 0; run[0] = left;
​
// Check if the array is nearly sorted
for (int k = left; k < right; run[count] = k) {
 if (a[k] < a[k + 1]) { // ascending
 while (++k <= right && a[k - 1] <= a[k]);
 } else if (a[k] > a[k + 1]) { // descending
 while (++k <= right && a[k - 1] >= a[k]);
 for (int lo = run[count] - 1, hi = k; ++lo < --hi; ) {
 int t = a[lo]; a[lo] = a[hi]; a[hi] = t;
 }
 } else { 
 //连续MAX_RUN_LENGTH(33)个相等元素,使用快排
 for (int m = MAX_RUN_LENGTH; ++k <= right && a[k - 1] == a[k]; ) {
 if (--m == 0) {
 sort(a, left, right, true);
 return;
 }
 }
 }
​
 //count达到MAX_RUN_LENGTH,使用快排
 if (++count == MAX_RUN_COUNT) {
 sort(a, left, right, true);
 return;
 }
}
​
// Check special cases
// Implementation note: variable "right" is increased by 1.
if (run[count] == right++) { // The last run contains one element
 run[++count] = right;
} else if (count == 1) { // The array is already sorted
 return;
}

归并排序源码

(int为例)

byte odd = 0;
for (int n = 1; (n <<= 1) < count; odd ^= 1);
​
// Use or create temporary array b for merging
int[] b;                 // temp array; alternates with a
int ao, bo;              // array offsets from 'left'
int blen = right - left; // space needed for b
if (work == null || workLen < blen || workBase + blen > work.length) {
 work = new int[blen];
 workBase = 0;
}
if (odd == 0) {
 System.arraycopy(a, left, work, workBase, blen);
 b = a;
 bo = 0;
 a = work;
 ao = workBase - left;
} else {
 b = work;
 ao = 0;
 bo = workBase - left;
}
​
// Merging
for (int last; count > 1; count = last) {
 for (int k = (last = 0) + 2; k <= count; k += 2) {
 int hi = run[k], mi = run[k - 1];
 for (int i = run[k - 2], p = i, q = mi; i < hi; ++i) {
 if (q >= hi || p < mi && a[p + ao] <= a[q + ao]) {
 b[i + bo] = a[p++ + ao];
 } else {
 b[i + bo] = a[q++ + ao];
 }
 }
 run[++last] = hi;
 }
 if ((count & 1) != 0) {
 for (int i = right, lo = run[count - 1]; --i >= lo;
 b[i + bo] = a[i + ao]
 );
 run[++last] = right;
 }
 int[] t = a; a = b; b = t;
 int o = ao; ao = bo; bo = o;
}
上一篇下一篇

猜你喜欢

热点阅读