数据结构与算法 03:时间复杂度 & 空间复杂度

2020-10-02  本文已影响0人  Style_月月

衡量不同算法的优劣一般从以下两个方面去考量

所以,评价一个算法的效率主要是看它的时间复杂度空间复杂度

时间复杂度

一般情况下,算法中的基本操作语句的重复执行次数问题规模 n 的某个函数,用 T(n)表示,若有某个辅助函数 f(n),使得当 n 趋近于无穷大时,T(n) / f(n) 的极限值为不等于零的常数,则称 f(n)是 T(n)的同数量级函数。记作T(n)= O( f(n) ),称O( f(n) )为算法的渐进时间复杂度,简称时间复杂度,主要有以下一些影响因素

这种用大写O()来表示的方式,称为大O时间复杂度表示法,这种方式并不具体表示代码真正执行的时间,而是表示代码执行时间随数据规模增长的变化趋势,也称为渐进时间复杂度,有以下一些规则

一般分析时间复杂度,有以下三种方式

常见的时间复杂度

常见的时间复杂度从小到大排序为:
O(1) < O(logn) < O(n) < O(nlogn) < O(n^2) < O(n^3) <O(2^n) < O(n!) < O(n^n)

下面简单举例说明下

所以找时间复杂度最高的代码,即为关键代码

最好、最坏、平均、均摊时间复杂度

均摊时间复杂度

均摊时间复杂度,以及它对应的分析方法,摊还分析(或者叫平摊分析),以下面这个插入算法为例,来了解什么是均摊时间复杂度

 // array表示一个长度为n的数组
 // 代码中的array.length就等于n
 int[] array = new int[n];
 int count = 0;
 
 void insert(int val) {
    if (count == array.length) {
       int sum = 0;
       for (int i = 0; i < array.length; ++i) {
          sum = sum + array[i];
       }
       array[0] = sum;
       count = 1;
    }

    array[count] = val;
    ++count;
 }

假设数组的长度是 n,根据数据插入的位置的不同,我们可以分为 n 种情况,每种情况的时间复杂度是 O(1)。除此之外,还有一种“额外”的情况,就是在数组没有空闲空间时插入一个数据,这个时候的时间复杂度是 O(n)。而且,这 n+1 种情况发生的概率一样,都是 1/(n+1)。所以,根据加权平均的计算方法,我们求得的平均时间复杂度就是

平均时间复杂度计算

因此,每一次 O(n) 的插入操作,都会跟着 n-1 次 O(1) 的插入操作,所以把耗时多的那次操作均摊到接下来的n-1 次耗时少的操作上,均摊下来,这一组连续的操作的均摊时间复杂度就是 O(1)。这就是均摊分析的大致思路均摊时间复杂度本质就是一种特殊的平均时间复杂度

空间复杂度

算法空间复杂度是指计算算法所需的存储空间, 其计算公式为S(n) = n(f(n)),n为问题的规模,f(n)为语句关于n所占存储空间的函数。所以在考察算法的空间复杂度,主要考虑算法执行所需要的辅助空间

下面以一个问题为例,来说明空间复杂度的计算
问题: 数组逆序,将一维v1.43数组a中的n个数逆序存放在原数组中.

针对这个问题,有以下两种算法:

参考链接
04 | 复杂度分析(下):浅析最好、最坏、平均、均摊时间复杂度

上一篇下一篇

猜你喜欢

热点阅读